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PROBLEM DESCRIPTION

The standard for the Norwegian traction power system is single-phase AC voltage at 15 kV and 162/3

Hz. This single-phase system is fed from the three-phase public power grid through several converter

stations. Most of these converter stations are made up of synchronous-synchronous rotary frequency

converters. This Master’s Thesis continues the work carried out fall 2017 and presented in the special-

ization project “Model of Single-Phase Synchronous Generators for Rotary Frequency Converters”. The

Master’s Thesis will describe different approaches for modeling single-phase synchronous generators

for rotary frequency converters.

The thesis will cover the following tasks:

• Carry out further literature study. Focus on instantaneous time-domain modeling of syn-

chronous machines and possible material newly published regarding single-phase synchronous

machines and rotary frequency converters.

• Clarify the parameter adjustments presented in the specialization project “Model of Single-

Phase Synchronous Generators for Rotary Frequency Converters” from autumn 2017. These

parameter adjustments are necessary when modeling single-phase synchronous machines as

asymmetrical loaded three-phase synchronous machines.

• Develop equations for an instantaneous time-domain model of a single-phase synchronous

machine. Apply two rotating MMF distributions for describing the behavior of the single-phase

pulsating armature MMF distribution of the machine.

• Develop alternative modeling methods to the ones presented above for describing the single-

phase synchronous machine. Explore the possibility of applying the phase equations directly

without transforming the machine quantities to a common rotor direct- and quadrature axis

reference frame.

• Implement and test the developed equations and adjusted parameters presented above in a

suitable simulation tool (e.g., MATLAB®/Simulink).

Project start: January 15th, 2018

Supervisor: Trond Toftevaag
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ABSTRACT

Synchronous-synchronous rotary frequency converters are in the Norwegian traction power system

applied for converting three-phase AC voltage at 50 Hz to single-phase AC voltage at 162/3 Hz. The

converters consist of a three-phase synchronous motor and a single-phase synchronous generator

combined on a common shaft. The three-phase motor is fed from the public grid and drives the

single-phase generator. The motor-to-generator number of pole ratio is three-to-one, enabling the

single-phase generator to generate the voltage at a frequency one-third of that applied to the three-

phase motor.

This Master’s Thesis describes three approaches for modeling single-phase synchronous generators in

rotary frequency converters.

(a) Model 1 (b) Model 2

is=ib

is=-ic

ia=0
is

vb

vc

N
vs=vb-vc

(c) Model 3

Model 1 is developed by applying one armature winding combined with rotor windings identical to

the three-phase machine’s rotor configuration. The equations are used directly, and not transformed

to a common reference frame. Test results obtained from the implemented model present a rotary

converter model experiencing initial conditions that are destabilizing the converter.

Model 2 views the behavior of the armature single-phase winding’s pulsating MMF distribution as

the result of two fictitious three-phase machines. Each machine induces a rotating MMF distribution.

Equations are developed for each machine individually. They are decoupled from each other but

interacts with their common rotor circuits. Successful model implementation has not been obtained,
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due to the simulation not converging to final solutions.

Model 3 applies a three-phase synchronous machine with one open-circuited phase and necessary

parameter adjustments for obtaining the behavior of the single-phase machine. Test results present

the converter model behaving as expected during the loaded steady-state performance. The rate of

decay of symmetrical fault current is faster than for sets of parameter adjustments carried out in the

literature.
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SAMMENDRAG

Det elektriske norske jernbanenettet bruker roterende frekvensomformere for å konvertere 50 Hz

trefase vekselspenning til 162/3 Hz enfase vekselspenning. Disse omformerne består av to synkronmask-

iner, en trefasenmotor mekanisk koblet til en enfasegenerator via en rotoraksling. Trefasemotoren

er forsynt av regionalnettet og driver enfasegeneratoren. Frekvensforholdet mellom trefasenettet og

enfasenettet er et resultat av polforholdet mellom motor og generator.

Denne masteroppgaven beskriver tre alternative metoder for å modellere enfase synkrongeneratorer

brukt i roterende frekvensomformere.

(a) Model 1 (b) Model 2

is=ib

is=-ic

ia=0
is

vb

vc

N
vs=vb-vc

(c) Model 3

Modell 1 tar i bruk en fase-vikling i stator, kombinert med rotorviklinger identiske de som blir brukt

for trefasemaskiner. Likningene er implementert direkte, uten å transformere variablene til et felles

referansesystem. Resultater fra den implementerte modellen presenterer en omformer med initielle

verdier som destabiliserer modellen.

Model 2 presenterer enfasemaskinens oppførsel som et resultat av to fiktive trefasemaskiner. Hver

maskin induserer en distribuert MMF. Individuelle likningssett er utviklet for hver maskin. Maskinene

er magnetisk dekoblet fra hverandre, men arbeider sammen med felles elektriske rotorkretser. Grunnet

manglende konverging av løsninger under simulering er ikke vellykkede testresultater hentet fra

modellen

Modell 3 tar i bruk en synkron trefasemaskin med en åpen fase og nødvendige parameterjusteringer
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for a oppnå oppførselen til den synkrone enfasemaskinen. Testresultater presenterer en frekven-

somformer som oppfører seg som forventet under stajonær opptreden. Reduksjonshastigheten til

symmetrisk kortslutningsstrøm er raskere enn ved bruk av parameterjusteringer behandlet i alterna-

tive kilder.
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Chapter 1

Introduction

1.1 BACKGROUND

Electrified railways are the most energy and emission-efficient major mode of land-based transport

[1]. The most efficient way of electrifying railways is through overhead contact lines located alongside

the railway tracks [2]. Environmental considerations are a priority for future investments in the

national infrastructure. Since electrified railway is a low CO2-emission mode of travel, investments

in the national railway infrastructure is essential for both infrastructural and environmental reasons

[3].

The Norwegian electric traction power system standard is single-phase AC voltage at 15 kV and 162/3 Hz,

and was introduced by a committee formed by the Norwegian parliament in 1916 [4]. System standard

assessments were carried out by the Norwegian State Railway, NSB, in 1995 regarding transitioning the

standard to 25 kV and 50 Hz. The transitioning was viewed financially not feasible, and the original 15

kV and 162/3 Hz standard were decided to be used for the future traction power systems [4].

The 162/3 Hz single-phase electric traction system is fed from the three-phase 50 Hz public system.

Frequency converters are applied for coupling the two frequency systems [5]. A converter is a device

that changes forms of the electricity. For the specific railway case in Norway, this changing of electricity

is from three-phase 50 Hz AC to single-phase 162/3 Hz AC. These converters are in the Norwegian

traction power system designed in two main ways, either electromechanical based or power electronic

based. The electromechanical based converters are known as rotary frequency converters, and

consist of a motor-generator set connected mechanically to a common shaft. Power electronic based

converters use power electronic solutions and are known as static frequency converters [2].

The majority of frequency converters applied in the Norwegian traction power system are rotary
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converters. These converters consist of a three-phase synchronous motor mechanically coupled to

a single-phase synchronous generator through a shaft. The behavior of the three-phase machine is

well-documented, and a variety of predefined models are applied for power system stability studies.

The single-phase synchronous machine is on the other hand not as widely used as the three-phase

machine. The single-phase machine’s time-domain related behavior is not documented in the same

manner as the three-phase machine’s. Because of it’s single-phase armature winding the machine’s

behavior differs from that of the three-phase machine, not enabling the same modeling techniques to

be applied.

1.2 OBJECTIVE

The overall objective of this Master’s Thesis is to obtain knowledge of the instantaneous time-domain

related behavior of the single-phase synchronous generator applied for synchronous-synchronous

rotary frequency converters. It is desired to develop sets of equations describing the single-phase

machine by using the classical modeling equations for electrical machines, combined with theories

presenting single-phase machine behavior.

1.3 LITERATURE SURVEY

A literature survey has been carried out for obtaining necessary knowledge regarding possible model-

ing methods that can are used for single-phase synchronous machines. The literature dealing with

modeling methods for single-phase synchronous machines is limited, and a variety of alternative

sources have been viewed. The major sources applied for the different modeling techniques developed

during the work of the Master’s Thesis is presented below.

• [6], [7], [8], [9], [10], [11] and [12] present the single-phase synchronous machine applied in

rotary converters. Modeling the single-phase machine as a asymmetrical loaded three-phase

synchronous machine are mentioned in a majority of these sources.

• [13] and [14] describe the armature MMF distribution’s pulsating behaviour in the single-phase

synchronous machine by applying two armature MMF distributions rotating in opposite direc-

tions.

• [15], [16], [17], [18], [19], [20] and [21] present dynamic modeling of single-phase induction

motors. The articles has been a important for understanding the behaviour of single-phase

machines, even though the sources are not directly applied in this Master’s Thesis.
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• [22], [23], [13], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39],

[40], [41] and [42] present both general and detail information regarding behavior and modeling

techniques for three-phase synchronous machines. The foundation of the work presented in

this Master’s Thesis is based on these sources.

1.4 SCOPE OF WORK

Based on the background information presented above, the literature survey carried out and the

Master’s Thesis objective the following scope of works have been established:

• Carry out further literature study. Focus on material newly published regarding single-phase

synchronous machines and rotary frequency converters.

• Clarify the parameter adjustments necessary when applying asymmetrical loaded three-phase

machines as single-phase machines. Apply new obtained parameters and compare new test

results with test results obtained for parameter adjustments carried out in the literature.

• Develop new single-phase synchronous machine equations based on the machine’s phase

quantities. Apply the quantities directly, without transforming quantities to a common reference

frame.

• Develop new single-phase synchronous machine equations based on the doubling revolving

field theory. View the single armature phase-winding’s pulsating MMF distribution as the result

of two fictitious three-phase machines.

• Implement and test the developed single-phase machine equations.

1.5 LIMITATIONS

The work presented in this Master’s Thesis is to be carried out focusing on developing sets of equations

describing single-phase synchronous machine’s behavior. The main simplifications of this thesis

are:

• Machine saturation has not been taken into account.

• The machine is modeled with constant applied field voltage, and AVR systems have not been an

issue for the work presented.
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• The focus has been on the single-phase synchronous machine, and the remaining traction

power system components have been greatly simplified.

1.6 SOFTWARE

The rotary frequency converter models presented in this Master’s Thesis have been implemented and

tested in MATLAB®/Simulink. MATLAB®/Simulink is a high-level language used for computationally

intensive tasks and is a product of MathWorks. Simulink blocks, defining mathematical relationships

between its inputs and outputs, and the Simscape language, with predefined mathematical systems,

have both been applied.

1.7 OUTLINE OF THE THESIS

The outline of the thesis is as follows:

• Chapter 1 introduces this thesis. Thesis objective and scopes of work are established based on

the literature study carried out and the background introduction presented.

• Chapter 2 introduces the Norwegian traction power system, and briefly presents the rotary

frequency converters.

• Chapter 3 gives an introduction to the equations applied when modeling three-phase syn-

chronous machines. The sub-transient-, transient- and steady state time regime are presented

briefly.

• Chapter 5 develops system equations and necessary parameter adjustments for implementing

three models of single-phase synchronous machines. The equation of motion for a rotary

converter is introduced.

• Chapter 6 presents test results from implementing three rotary converters applying the three

single-phase machine models presented in Chapter 5. The chapter includes an overview and a

discussion comparing test results with established single-phase theory.

4



Chapter 2

The Norwegian Traction Power System

2.1 THE NORWEGIAN TRACTION POWER SYSTEM

The Norwegian railway infrastructural system consists of 4208 km of railway lines, whereas 2456 km

are electrified [43]. The electrified 162/3 Hz traction power system contains power generation-, power

conversion- and power transmission equipment, in addition to the traction power system loads [44].

The conversion equipment presents 33 converter stations, located at intervals alongside the traction

power line, and is feeding power from the public- to the traction power grid [45]. These intervals are

commonly 20-90 km in the Norwegian traction power system [44]. This feeding method is commonly

referred to as decentralized feeding. Fig. 2.1 presents such a system, where a 66 kV three-phase 50 Hz

AC system is feeding power to a 16.5 kV 162/3 Hz single-phase AC system through two rotary- and one

static converter.

SM SG SM SG
~

= ~=

66 kV

50 Hz

3-phase

15kV

16 2/3 Hz

1-phase

=

Figure 2.1: Decentralized feeding of the traction power system1

1Based on [46]
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The low frequency of the Norwegian traction power system is a result of the limited commutating ability

of the available propulsion motors during the early 20th-century [47]. The German Länderbahnen

signed in 1912 an "Agreement on the execution of electrical railway transport". This agreement sat

the standard of traction power system to single-phase AC voltage at 15 kV and 162/3 Hz [5]. These

standards are today applied in Germany, Austria, Sweden, Switzerland and Norway [48].

2.2 ROTARY FREQUENCY CONVERTER

The decentralized Norwegian feeding of the traction power system is carried out by applying, in

addition to static converters, fixed-frequency synchronous-synchronous rotary frequency converters.

These converters consist of a three-phase synchronous motor and a single-phase synchronous gener-

ator combined on a common shaft. The two machines feature the same mechanical frequency [49].

Since the motor has a triple number of poles compared to the generator, the electrical frequency on the

generator side is always one-third of the applied frequency on the motor side [50]. The three-to-one

relation between the motor’s and generator’s rotor poles is presented in Fig. 2.2. The motor and

generator are here constructed with 12 and four poles, respectively.

Figure 2.2: 12-poled synchronous motor mechanically coupled to a 4-poled synchronous generator2

The three-phase motor is supplied from the 50 Hz public grid. The common mechanical coupling

between the generator and motor results in shared mechanical frequency, and based on (2.1) a 162/3

Hz electrical generation is achieved at the generator side [26].

nmP = 120 fs (2.1)

2Based on [7]
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Loads of the traction power system, being the traction locomotives, varies heavily to time as the

locomotives accelerate and decelerate along the railway line. The active power these loads require is

fed from the three-phase grid through a step-down transformer and via the mechanical shaft of the

converter [51]. The power is further on supplied to the traction power grid through a single-phase

step-up transformer at 16.5 kV. The voltage delivered by the converters to the traction power system

is 1.5 kV higher than the traction system’s nominal voltage. The high voltage compensates for large

voltage drops occurring between the converter and the railway locomotives [3]. The transformers

enable the converters to be galvanic isolated from the two electrical systems at the same time as the

nominal voltage of the converter components can be decreased.

Figure 2.3: A three-phase public grid and a single-phase traction grid connected through a rotary converter

The rating of the rotary converters varies from 5.8-10 MVA [45]. As an example, the rotary converter

type ASEA Q38 has a 4.4 MVA rated motor and a 4.0 MVA rated generator [52]. The converter has a

total of 5.8 MVA rating, which is possible due to increased cooling of the machines. The ASEA Q38

converters are mounted on dedicated railway carriages and are equipped with automatic voltage

regulators on both the motor and the generator side [53].
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Chapter 3

The Three-Phase Synchronous Machine

Almost all energy from primary energy sources that are consumed by various loads in an electric

power system is converted to electrical energy by synchronous machines. The largest portion of these

are three-phase synchronous machines, and it is of high importance to develop usable and realistic

models of these machines when dealing with dynamic phenomena in electric power systems [39]. In

the following chapter a general mathematical description of a salient-poled three-phase synchronous

machine with damper bars will be obtained.

Figure 3.1: Three-phase synchronous machine with armature- and field windings and damper bars located on
the rotor poles1

1Based on [32]
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3.1 MMF DISTRIBUTION FOR A SINGLE PHASE-WINDING

The MMF distribution induced by one single-phase armature winding is sinusoidal and stationary,

pulsating back and forth along the winding’s magnetic axis.

The fundamental component of air-gap MMF for a distributed multi-pole winding with NS turns is

presented in (3.1).

FS(1) = 4

π
(

kw NS

P
)iS cos(α) (3.1)

4
π arises from the Fourier series fundamental component of a rectangular MMF distribution, kw is

the machine’s winding factor, kw NS is the effective series turns for the single-phase winding, P is the

number of machine poles and α is the angle measured from the winding’s magnetic reference axis.

The term cos(α) is indicating that the MMF is sinusoidally distributed in space [28]. If in addition

assuming a sinusoidally shaped phase-current in the armature winding, the MMF distribution is given

as presented in (3.2).

FS(1) =Fmax cos(α)cos(ωs t ) (3.2)

The peak amplitude of the MMF, Fmax , equals 4
π

kw Nph

P Is and cos(ωe t ) implies that the MMF’s am-

plitude is varying sinusoidally in time at frequency ωe at given angular position α [28]. The MMF

distribution is rewritten by applying the trigonometric relationship presented in (3.3).

cos(a)cos(b) = 1

2
(cos(a +b)+cos(a −b)) (3.3)

The resulting MMF distribution of a single-phase winding can finally be viewed as the sum of two

sinusoidally distributed MMFs rotating in counterclockwise/synchronous and clockwise/counter-

synchronous direction [14]. The amplitude of the two rotating MMFs are equal, but half of the

pulsating armature MMF’s amplitude [54].

FS(1) = 1

2
Fmax cos(α−ωs t )︸ ︷︷ ︸

FCCW
S(1)

+ 1

2
Fmax cos(α+ωs t )︸ ︷︷ ︸

FCW
S(1)

(3.4)
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Figure 3.2: A pulsating sinusoidally distributed armature field, viewed as two rotating sinusoidally distributed
fields2

Both MMF distributions in (3.4) are presented as space vectors rotating in counterclockwise and

clockwise direction, respectively [13].

3.2 MMF DISTRIBUTION FOR THREE PHASE-WINDINGS

For a three-phase machine, every winding will induce the same MMF distribution as presented

for a single-phase machine. The combined MMF for the entire machine is the sum of the MMF

contributions from each individual winding. The windings of the individual phases are displaced 120

degrees in space and the instantaneous armature currents are shifted 120 electrical degrees in time.

The result is the space vector MMF presented in (3.5), rotating in counterclockwise direction with

constant amplitude 3/2 times larger that of the the maximum peak of a single phase-winding’s MMF

[24].

F3ph(1) =
3

2
Fmax cos(α−ωs t ) = 3

2
FCCW

S(1) (3.5)

2Based on [54, 24, 13]
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3.3 REFERENCE FRAMES

The rotor field winding of a synchronous machine has a DC excitation, inducing a MMF distribution

stationary to the rotor. The rotor is revolving due to a primary energy source and the rotor MMF is

therefore rotating at the same speed as the rotor. The three phase-currents flowing in the armature

windings located on the stator are inducing a MMF distribution in the air-gap rotating at synchronous

speed in counterclockwise direction. The three-phase synchronous machine will produce steady

torque when the rotor- and stator MMFs are rotating at the same velocity [35].

Based on the symmetry of the rotor field-poles a magnetic reference axis referred to as the direct-

axis is introduced, aligned with the rotating DC-current induced rotor MMF distribution [32]. The

quadrature axis is located midway between two poles, 90 electrical degrees on the direct-axis. These

axes, commonly referred to as the d- and q-axis, form the rotor reference frame. The armature

windings of the stator have individual stationary magnetic axes. The armature- and rotor reference

frames are observed in Fig. 3.1. A rotor angle, θd , is commonly introduced as the angle between the

stationary magnetic axis of phase-a winding and the direct axis of the rotor. It is assumed that these

axes are aligned at time equals zero [37].

3.4 INDUCTANCE

Salient-pole rotors are normally applied for synchronous machines operating at low speeds. The

air-gap between the salient-poled rotor and the cylindrical shaped stator is non-uniform, and the

machine’s magnetic coupling will be influenced by the rotation of the rotor [32]. When the rotor’s

magnetic axis, the d-axis, is aligned with an armature winding’s magnetic axis, the air-gap length

between the stator- and rotor cores is at it’s minimum. If the rotor rotates 90 electrical degrees the

q-axis will be aligned with the armature winding’s magnetic axis and the air gap will be at it’s maximum.

Since the main reluctance of the flux in the machine is offered by the air-gap length the reluctance

will have a permanent value in addition to a periodically changing term [35]. This is presented in

(3.6).

RS =Rss0 +RssP cos(2θd ) (3.6)

The self-inductance of a winding is the ratio of the flux linking a winding to the current flowing in

the winding when no other currents are flowing. The inductance is proportional to the inverse of

the machine’s reluctance and can be derived based on the winding’s MMF distributed along the d-
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and q-axis. The result is an inductance with a second harmonic variation with respect to the rotor’s

rotation, as presented in (3.7). Lss0 is the constant term of the self inductance, and Ll s is the leakage

inductance representing the winding’s leakage flux.

Lss = Ll s +Lss0 −LssP cos(2θd ) (3.7)

The mutual inductance between two windings is the ratio of flux linked by one winding due to the

current flowing in the second winding when all other winding currents are zero [30]. The mutual

inductance will be at it’s peak value when the q-axis is aligned with one of the windings. The rotor’s

magnetic axis is then located midway between the two windings. In the same manner as deriving

the self-inductance of an armature winding, the mutual inductance between two armature windings

located ζ electrical degrees apart can be derived. The result is presented in (3.8) for a phase-a and

phase-b winding in a three-phase machine. ζ is here equal to 2π
3 . The constant term Ls1s2 of the

mututal inductance equals half of the constatn term of a winding’s self inductance.

Lab =−Ls1s2 −LssP cos(2θd −ζ) =−Lss0

2
−LssP cos(2θd −ζ) (3.8)

The mutual inductance between rotor- and stator windings do not contain any constant terms since

the air gap for d- and q-axis windings are fixed. The maximum mutual inductance between the

armature winding and d- or q-axis windings will occur when the d- or q-axis are aligned with the

armature winding’s magnetic axis respectively. This is presented in (3.9a) for the mutual inductance

between phase-a winding and d-axis damper winding, and and (3.9b) for the mutual inductance

between phase-a winding and the q-axis damper winding [37] .

LaD = LsDP cos(θd ) (3.9a)

LaQ = LsQP cos(θd + π

2
) =−LsQP sin(θd ) (3.9b)

The self- and mutual inductances for the rotor windings do not dependent upon the rotor angle θd

due to the cylindrical structure of the stator [32]. The windings on the d-axis and the q-axis are located

90 electrical degrees apart, and there will be no mutual coupling between these windings [37].
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3.5 MAGNETIC COUPLING

The armature- and field windings and damper bars located in a three-phase synchronous machine are

magnetically coupled to each other. This means that the flux in each winding depends on the current

in all the other windings and bars. This is represented by the flux-linkage in (3.10) [34].

ψ= L · i (3.10)

A general description of coupling between the machine windings and bars are presented in (3.11).

ψS

ψR

=
 LS LSR

LRS LR

 ·
−iS

iR

 (3.11)

The stator inductance matrix LS in the inductance matrix L contains self- and mutual inductances

for the armature windings. The inductance matrix LSR presents the mutual inductances between the

armature stator windings and the rotor windings. This matrix is identical to the transposed matrix of

mutual inductances between the rotor and stator LRS . All elements in these three matrices are rotor

angle dependent. The rotor inductance matrix LR contains the self- and mutual inductances for the

rotor windings. All inductance elements in this matrix are constant due to the rotor configuration and

the applied DC quantities to the field circuit. Mutual inductances between the d- and q-axis are zero.

The minus sign observed for the phase currents in (3.11) is a result of the current- and flux linkage

reference direction.

For a three-phase synchronous machine with one additional damper winding in the d- and q-axis,

(3.11) is expanded to (3.12).



ψa

ψb

ψc

ψ f

ψD

ψQ


=



Laa Lab Lac La f LaD LaQ

Lab Lbb Lbc Lb f LbD LbQ

Lac Lbc Lcc Lc f LcD LcQ

La f Lb f Lc f L f f L f D 0

LaD LbD LcD L f D LDD 0

LaQ LbQ LcQ 0 0 LQQ


·



−ia

−ib

−ic

i f

iD

iQ


(3.12)
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3.6 VOLTAGES

The voltages, currents and flux linkages of the armature electrical circuits are related by applying

Kirchoff’s voltage law, as presented in (3.13).

va = d

d t
ψa −RS ia

vb = d

d t
ψb −RS ib

vc = d

d t
ψc −RS ic

(3.13)

Similar relationships are experienced in the rotor electrical circuits, as presented in (3.14).

v f =
d

d t
ψ f +R f i f

vD = d

d t
ψD −RD iD = 0

vQ = d

d t
ψQ −RQ iQ = 0

(3.14)

The damper bars are shorted at their terminals and the terminal voltages of both d- and q-axis damper

circuit are equal to zero. The system for the three-phase synchronous machine is presented in Fig.

3.3.
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Figure 3.3: Synchronous machine with three armature windings, one field winding and one d- and one q-axis
damper winding with associated self inductances3

3.7 FROM STATOR- TO ROTOR REFERENCE FRAME

As earlier presented, all the self- and mutual inductances of the armature windings and the mutual

inductances between the field- and armature windings are angle dependent. This gives presence to a

complicated time-varying coefficient in the machine’s equations. When observing the flux-linkages of

a three-phase synchronous machine in (3.12), it is noted that the solution of the voltage equations

(3.13) and (3.14) are highly formidable. For a machine with one additional damper winding in d-

and one in q-axis, the voltage equations leads to a set of six coupled differential equations with

time-varying coefficients [37].

The time-varying set of differential equations in (3.13) can be greatly simplified by transforming the

phase quantities of the stator to a new set of variables related to an orthogonal reference frame rotating

at rotor speed [37], commonly known as the d −q-reference frame. This transformation is called the

3Based on [37]
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Park’s transformation and was introduced by R. H. Park in 1929 [42]. Park’s voltage invariant matrix is

presented in (3.15).

P = 2

3


cos(θ) cos(θ− 2π

3 ) cos(θ− 4π
3 )

−sin(θ) −sin(θ− 2π
3 ) −sin(θ− 4π

3 )
1
2

1
2

1
2

 (3.15)

P−1 =


cos(θ) −sin(θ) 1

cos(θ− 2π
3 ) −sin(θ− 2π

3 ) 1

cos(θ− 4π
3 ) −sin(θ− 4π

3 ) 1

 (3.16)

The quantities in the rotating reference frame are obtained by multiplying the three-phase quantities

with Park’s matrix. The transformation is presented in (3.17) for a phase variable x, representing the

armature quantities of flux linkage, phase-voltage and phase-current.


xd

xq

x0

= P


xa

xb

xc

 (3.17)

The original phase quantities are obtained by multiplying the transformed quantities with the inverse

of the Park’s matrix, presented in (3.16). The calculation is presented in (3.18).


xa

xb

xc

= P−1


xd

xq

x0

 (3.18)

By multiplying the variables with Park’s matrix, P , the armature quantities are transformed into a

reference system with a stationary rotor. This implies that the new d −q-reference system rotates at

rotor speed. Two new fictitious armature windings are identified, the armature d- and q-axis winding.

The magnetic axis of the d-axis winding is aligned with the rotor d-axis rotor magnetic axis, while

the magnetic q-axis winding is located 90 electrical degrees ahead of the d-axis. The new reference

frame is therefore rotor referenced. The resultant rotating MMF distribution produced by the phase

currents ia , ib and ic can be resolved into a d- and q-axis component. The currents id and iq produces

a MMF along their respective magnetic axes equal the d- and q-component of the resultant rotating

MMF produced by the phase currents. Since the axes are rotating, this current is constant for balanced

conditions [22]. The zero-component presented in (3.17) and (3.18) are zero for balanced conditions.
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The current i0 is identical to the zero sequence phase current known from symmetrical component

theory.

The factor 2/3 observed in (3.15) is a result of keeping the transformation voltage and current invariant.

The peak values of dq- currents and voltages are equal to the peak values of phase-currents and

phase-voltages [40].

The transformed d −q-variables are applied in the set of voltage balance equations (3.13) and a new

set of equations in a rotating reference frame are obtained. The voltage equations are rewritten, as

presented in detail in Appendix A, and the final voltage equations for the armature electrical circuits

are obtained. The resulting set of voltage balance equations are presented in (3.19).

Figure 3.4: Three-phase synchronous machine with two armature windings, one field winding and one d-
and-one q-axis damper winding with associated synchronous- and self inducances4

vd =−RS id + d

d t
ψd −ωrψq (3.19a)

vq =−RS iq + d

d t
ψq +ωrψd (3.19b)

v0 =−RS i0 + d

d t
ψ0 (3.19c)

v f = R f i f +
d

d t
ψ f (3.19d)

0 = RD iD + d

d t
ψD (3.19e)

0 = RQ iQ + d

d t
ψQ (3.19f)

4Based on [37]
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When comparing the sets of voltage equations in (3.13) and (3.19) two additional terms are observed,

ωrψq and ωrψd for the d- and q-axis voltages, respectively. These terms are known as speed volt-

ages, and present the induced voltages in the stationary armature coils due to a an armature MMF

distribution rotating at synchronous speed. The terms d
d tψd and d

d tψq are commonly referred to as

the transformer voltages and are a result of the rate of change of flux linkage. During steady state

machine performance the transformer voltages are zero and the speed voltages will be the dominant

component of the armature voltages [32].

The rotor referenced flux linkages are obtained based on (3.10) when applying the equations of

transformation as presented in (3.17) and (3.18). The calculations are presented in detail in Appendix

B. The result is an associated inductance matrix that are independent of the rotor angle. The resulting

flux linkages are presented in (3.20).

ψd =−Ld id +LS f P i f +LSDP iD (3.20a)

ψq =−Lq iq +LSQP iQ (3.20b)

ψ0 =−L0i0 (3.20c)

ψ f =−3

2
Ls f P id +L f f i f +L f D iD (3.20d)

ψD =−3

2
LsDP id +L f D i f +LDD iD (3.20e)

ψQ =−3

2
LsQP iq +LQQ iQ (3.20f)

Ld and Lq is referred to as the d- and q-axis synchronous inductance, and is based on the induc-

tances presented in (3.12). When converting this flux-linkage equation to a reference frame, the

stator inductance matrix LS is converted into a diagonal 3x3-matrix with elements equal to the axes’

synchronous inductances. The inductance matrix is presented in (B.5) of Appendix B. The magnetizing

inductances of each axis are defined as viewed in (3.21a) and (3.21b) where the synchronous d-and

q-axis inductances are presented.

Ld = Ll s +
3

2
(Lss0 +LssP )︸ ︷︷ ︸

Lmd

(3.21a)
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Lq = Ll s +
3

2
(Lss0 −LssP )︸ ︷︷ ︸

Lmq

(3.21b)

These synchronous inductances also have a practical understanding and can be measured. The d-axis

synchronous inductance is the ratio of armature flux linkage to the armature current when the rotating

MMF distribution of the armature is aligned with the MMF distribution of the field. Similarly, the

q-axis synchronous inductance is the same ratio when the rotating MMF distribution of the armature

is aligned with the q-axis [29].

The armature phase windings have Nph turns, while the field winding and d- and q-axis damper bars

have N f , ND and NQ turns respectively. The rotor voltages, -currents and -flux linkages are substituted

with stator referred variables by multiplying the rotor referred field winding and damper bars variables

with N f /Nph, ND/Nph and NQ/Nph respectively. If in addition multiplying the stator referred rotor currents

with a factor 2/3 the magnetizing inductances for the all d- and q-axis windings becomes Lmd and Lmq

respectively [30, 41]. The flux linkages are rewritten and presented in (3.22). The subscript ′ indicates

that the rotor currents are stator referenced.

ψd =−Ld id +Lmd i
′
f +Lmd i

′
D (3.22a)

ψq =−Lq iq +Lmq i
′
Q (3.22b)

ψ0 =−L0i0 (3.22c)

ψ f =−Lmd id +L f f i
′
f +Lmd i

′
D (3.22d)

ψD =−Lmd id +Lmd i
′
f +LDD i

′
D (3.22e)

ψQ =−Lmq iq +LQQ i
′
Q (3.22f)

The equations presented in (3.19) and (3.22) are known as Park’s equations, and are applied when

modeling three-phase synchronous machines [37].

3.8 PARAMETERS OF THE THREE-PHASE SYNCHRONOUS MACHINE

The fundamental transient characteristic of a three-phase synchronous machine are examined by

applying a bolted three-phase short-circuit fault at the machine’s terminals [36]. The fault current

has two distinct components, a symmetrical component with fundamental frequency and a DC offset
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component. The symmetrical component will decay at a changing rate, fast for the first few cycles,

than slower until the component reaches it’s steady state value. The DC offset component will decrease

exponentially. The decay of the fault circuit is observed in the Fig. 3.5 together with the decay of

damper- and field currents [32].

ia

if

iD

Td'' Td' Ta

Td' Ta

TaTd''

Figure 3.5: Armature-, field and damper currents during a three-phase short circuit fault [34]

The rate of decay of the symmetrical short-circuit component is explained by observing Fig. 3.6. A

three-phase synchronous machine with a salient-poled rotor experiences here a three-phase short-

circuit at the armature terminals. The short-circuit causes the armature currents to increase instanta-

neously, but flux linking a closed conducting path cannot change instantaneously [25].

ψ(t = 0−) =ψ(t = 0+) (3.23)

As the fault current increases, the armature flux linking the other electrical circuit in the machine

increases with the current. As a result, currents with symmetrical- and DC offset components are

induced in the damper bars and field winding to prevent the armature flux to enter the rotor circuit

[34]. The fastest decay of symmetrical fault current is related to the damper bars, while the slower

decay is related to the field winding. The induced currents will therefore decrease faster in the damper
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bars than in the field winding [29]. This is a result of the damper bars’ resistances normally being larger

than that of the field winding. The decay period where the damper bars are most active is referred

to as the sub-transient state. The armature flux’ path is observed in Fig. 3.6a. When the damper

currents have decreased significantly the field winding’s induced current will continue to decrease

until it reaches it steady state value. This decrease is referred to as the transient state and the flux’ path

is observed in Fig. 3.6b. The armature flux is finally allowed to enter all the machines circuits, and the

fault current reaches it’s steady state value. The flux path is observed in Fig. 3.6c.

ΦS

ΦS

FR

(a) The sub-transient state

ΦS

ΦS

FR

(b) The transient state

ΦS

ΦS

FR

(c) The steady-state

Figure 3.6: Rotor screening during a disturbance event5

The dynamics of a synchronous machine is often analyzed separately in the sub-transient-, transient-

and steady state. This is carried out by assigning the states with different equivalent circuits. As

mentioned earlier, the different rotor circuits are damped differently. Different rotor circuits are

therefore interacting together with the armature during the three different states [29].

The change of armature d- and q-axis flux linkage in synchronous operation are defined as the change

of all d- and q-axis currents multiplied with their respective inductances, as presented in (3.24a) and

(3.24b), respectively. ∆ indicates here the deviation from synchronous operation for flux linkages and

currents.

∆ψd = Ld∆id +Lmd∆i f +Lmd∆iD (3.24a)

∆ψq = Lq∆iq +Lmq∆iQ (3.24b)

For the sub-transient period the induced rotor currents will keep the flux linkage for every rotor circuit

initially constant, as presented in (3.23). The change in field- and damper flux linkage are therefore

5Based on [34, 29]
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zero for the d- and q-axis, as presented in (3.25a) and (3.25b), respectively.

∆ψ f = Lmd∆id +L f f ∆i f +Lmd∆iD = 0

∆ψD = Lmd∆id +Lmd∆i f +LDD∆iD = 0
(3.25a)

∆ψQ = Lmq∆iq +LQQ∆iQ = 0 (3.25b)

As inductance is defined as the ratio between flux linkage and current, the sub-transient d- and q-axis

synchronous inductance are derived by solving the equations in (3.25a) and (3.25b) with respect to

∆i f , ∆iD and ∆iQ . By inserting these equations into (3.24a) and (3.24b) the relationship between

change of d- and q-axis flux linkage and change of d- and q-axis armature current are obtained as

presented in (3.26a) and (3.26b), respectively.

∆ψd = (Ld − L2
md (Ll f +LlD )

L f f LDD −L2
md

)︸ ︷︷ ︸
L
′′
d

∆id (3.26a)

∆ψq = (Lq −
L2

mq

LQQ
)︸ ︷︷ ︸

L
′′
q

∆iq (3.26b)

For the transient period there are no induced currents in the damper bars. The change of armature d-

and q-axis flux linkage is therefore as given in (3.27a) and (3.27b).

∆ψd = Ld∆id +Lmd∆i f (3.27a)

∆ψq = Lq∆iq (3.27b)

The field flux linkage is still zero, but not depending upon the change of damper currents. The damper

currents effect are therefore removed and the field flux linkage is given as in (3.25a), except for the

damper current contribution from ∆iD is removed. The relationship between change of d- and q-axis

flux linkage, and change of d- and q-axis armature current are obtained as presented in (3.28a) and
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(3.28b), respectively.

∆ψd = (Ld − L2
md

L f f
)︸ ︷︷ ︸

L
′
d

∆id (3.28a)

∆ψq = Lq︸︷︷︸
L
′
q

∆iq (3.28b)

It is observed that since the q-axis doesn’t contain any field winding, the transient- and steady state

synchronous q-axis inductance are the same.

The inductances presented in (3.26a), (3.26b), (3.28a) and (3.28b) are rewritten by appreciating that

the magnetizing inductances in d- and q-axis are identical for all d- and q-axis windings. The result is

presented in (3.29).

Ld = Ll s +Lmd

Lq = Ll s +Lmq

L
′
d = Ll s +

Lmd Ll f

Lmd +Ll f

L
′
q = LLs +Lmq

L
′′
d = Ll s +

Lmd
Ll D Ll f

Ll D+Ll f

Lmd + Ll D Ll f

Ll D+Ll f

L
′′
q = Ll s +

Lmq LlQ

Lmq +LlQ

(3.29)

Ld , Lq , L
′
d , L

′
q , L

′′
d , L

′′
q are recognized as the armature leakage inductance in series with the parallel

connection of the involved electric circuits’ leakage inductances. The result is presented in Fig.

3.7.
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Lls

Lmd Ld

Lls

Lmq Lq

(a) The d- and q-axis syn-
chronous inductance

Lls

Lmd L'd

Lls

Lmq L'q

Llf

(b) The d- and q-axis transient
synchronous inductance

Lls

Lmd L"d

Lls

Lmq L"q

LlfLlD

LlQ

(c) The d- and q-axis sub-transient
synchronous inductance

Figure 3.7: Synchronous inductances for the sub-transient-, transient- and steady state 6

The symmetrical component of the short-circuit fault current will contain exponential factors in which

the rate of decrement is given by time constants. It is usually convenient to express the characteristic

of synchronous machines in terms of these time constants [36]. The magnetic energy in an electric

circuit with an inductance and resistance will dissipate over a given time, and the circuit’s current will

decrease exponentially to zero with a time constant equal to (3.30) [35].

T = L

R
(3.30)

The time constants applied when describing the decay of the symmetrical component are the short-

circuit time constants T
′
d , T

′′
d and T

′′
q . These time constants, together with the armature time constant

Ta , is observed in Fig. 3.5 during the decay of damper-, field- and armature current. The commonly

applied open-circuit time constant, T
′
d0, T

′′
d0 and T

′′
q0 are calculated by inserting the damper- or field

resistance into the damper- or field branch presented in Fig. 3.7. The time constants are presented in

(3.31).

T
′
d0 =

L f f

R f
= Ll f +Lmd

R f
(3.31a)

T
′′
d0 =

LlD + Lmd Ll f

ll f +Lmd

RD
(3.31b)

T
′′
q0 =

LQQ

RQ
= LlQ +Lmq

RQ
(3.31c)

6Based on [32]
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3.9 ELECTROMAGNETIC POWER

The terminal power output of a three-phase synchronous machine is the product of armature phase

voltages and phase currents, as presented in (3.32) [41].

Pt = vaia + vbib + vc ic (3.32)

The phase quantities are eliminated in terms of rotor referenced quantities by applying the transfor-

mation presented in (3.17). The rotor referenced armature voltages, vd and vq , from (3.19) can further

on be substituted into the power equation of (3.32), and the resulting power output is presented in

(3.33) [37].

Pt = 3

2
((id

d

d t
ψd + iq

d

d t
ψq +2i0

d

d t
ψ0)︸ ︷︷ ︸

Armature magnetic power

+ 2

P
ωr (ψd iq −ψq id )︸ ︷︷ ︸

Air-gap power

− (i 2
d + i 2

q +2i 2
0 )Rs)︸ ︷︷ ︸

Ohmic losses

(3.33)

The power transferred across the air gap is here denoted as the electromagnetic power output of

the machine, and is defined as the terminal machine power in addition to the ohmic losses of the

machine. By assuming steady state machine performance, the magnetic power term goes to zero, and

the electromagnetic power is defined as presented in 3.34 [32].

Pem = 3

2

2

P
ωr (ψd iq −ψq id ) (3.34)

3.10 EQUATION OF MOTION

The rotational inertia equations are of great importance when describing the effect of unbalance

between generated electromagnetic torque and applied mechanical torque for electric machines.

The motion of the machine’s rotor is determined by Newton’s second law of motion, given by (3.35)

[32].

Jtot
d 2

d t 2 θm(t ) = Tm(t )−Tem(t )−Ddωm(t ) (3.35)
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The total moment of inertia of all rotating parts is presented as Jtot , θm is the mechanical rotor

angle with respect to a stationary reference, Tm and Tem are the applied mechanical torque and the

generated electromagnetic torque and Ddω is the damping toque, here expressed by the damping

torque coefficient, Dd , and the mechanical rotational velocity of the rotor, ωm [37], [34].

For convenience, the equation of motion are rewritten on a synchronously rotating reference frame

with rotor electrical angles. The rotor angle is measured with respect to a synchronously rotating

reference, ωsm t , as presented in (3.36). The rotor angle is further transformed to electrical degrees by

multiplying the mechanical angle with the number of machine pole pairs.

δm = θm −ωsm t (3.36)

δ= P

2
δm (3.37)

It is furthermore appreciated that the product of torque and mechanical rotational velocity is power.

(3.35) is then rewritten in terms of unbalance of power, and the equation is normalized in terms of

rated power. The resulting equation of motion is presented in (3.38).

2H

ωs

d 2

d t 2δ+D
d

d t
δ= pm,pu −pem,pu (3.38)

The inertia constant, here presented as H , is the machine’s stored kinetic energy at synchronous speed

divided by the it’s rated apparent power. H is one of the most important parameters of the machine,

and directly affects the stability of the power system [37]. ωs is the nominal electrical rotational

velocity, D is the damping coefficient related to the damping power, and pm,pu and pem,pu are the

normalized applied mechanical power and generated electromagnetic power, respectively [37]. (3.38)

can further rewritten by appreciating the calculations presented in (3.39), where δpu is the per unit

rotor angle.

1

ωs

d 2

d t 2δ=
d 2

d t 2δpu (3.39)

The equation of motion, commonly referred to as the swing equation, is presented in (3.40).

2H
d 2

d t 2δpu +D
d

d t
δpu = pm,pu −pem,pu (3.40)
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Chapter 4

The Single-Phase Synchronous

Machine

An electric synchronous machine constructed with one armature winding is commonly referred to as

a single-phase synchronous machine. The machine contains the same magnetic components as the

traditional three-phase synchronous machine, a rotor, and a stator. The fundamental construction of

the machine is presented in Fig. 4.1.

Figure 4.1: Single-phase synchronous machine

The machine’s rotor is similar to that of the three-phase machine’s. The poles have a salient shaped

construction due to the low-frequency operation and contain short-circuited damper bars [12]. The

rotor also includes the field winding, responsible for inducing the machine’s rotor MMF distribution.

The stator is constructed with one armature winding, generating power to a single-phase electric
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system. Since there is not provided symmetrical three-phase windings in the stator, traditional

methods for modeling three-phase synchronous machines cannot be applied when analyzing single-

phase machines [49]. A three-phase machine can induce constant electromagnetic power during

steady state machine performance. Currents are only induced in the damper bars for producing

damping power during electromechanical transients [25]. When only one armature winding is loaded,

which is the case for a single-phase machines, the induced electromagnetic power pulsates at double

AC frequency [55]. The pulsation causes rotor currents to be induced in the rotor circuits at double AC

frequency [12], also during steady-state machine operation. Currents will flow continuously in these

windings, and the damper bars for the single-phase machine are therefore constructed larger than

those of the three-phase machine [10].

4.1 SINGLE ARMATURE PHASE-WINDING

The MMF distribution of a loaded single-phase winding was presented in (3.1). By applying trigono-

metric relationships, the pulsating MMF distribution was presented as two MMF distribution rotating

in a counterclockwise- and clockwise direction at synchronous speed. This was presented in (3.4) and

was observed in Fig. 3.2. The peak MMF distributions of the armature are viewed in Fig. 4.2. It is here

observed how the counterclockwise- and clockwise rotating MMF distributions, FCCW
S and FCW

S ,

recreates the behavior of the pulsating armature MMF distribution, FS .

Figure 4.2: Two fields rotating in opposite directions, resulting in a stationary pulsating field 1

The counterclockwise-rotating MMF distribution rotates at synchronous speed and locks onto the

rotor MMF distribution. The clockwise MMF distribution rotates in a clockwise direction at double

speed compared to the rotor MMF distribution [13]. The MMF distribution rotating in a counter-

clockwise direction is responsible for the desired electromagnetic torque induced by the machine

converting from mechanical- to electrical energy. The effect of the clockwise rotating field is damped

out by Eddy currents in the rotor [54] and second harmonic currents induced in the short-circuited

damper bars and field winding of the rotor [12]. If the rotor core is laminated the effect of Eddy

1Based on [54]
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currents are nonexistent [14]. The second harmonic currents induced in the rotor circuits are a direct

result of the relative rotational speed between the clockwise rotating MMF distribution and the rotor

MMF distribution. The induced currents cause a MMF distribution oscillating at second fundamental

frequency along the machine’s rotating d-axis. The double fundamental frequency MMF can be viewed

as two MMFs rotating at three times the fundamental frequency in a counterclockwise direction and

at the fundamental frequency in a clockwise direction, respectively [13]. The two MMF distributions

are presented in Fig. 4.3.

Figure 4.3: Rotor MMF oscillating along the d-axis, viewed as two MMFs rotating at 2ωs counterclockwise and
ωs clockwise

The resultant MMF distribution of the machine is the sum of the MMF distribution from the armature

and the MMF distribution from the rotor field.

#       »
FRes = #  »

FS + #   »
FR (4.1)

The resultant flux of the machine is therefore equal to the resultant MMF distribution divided by

the air-gap reluctance. This relationship is presented in (4.2) and the stator and rotor fluxes can be

observed in Fig. 4.4.

φ= FRes

R
(4.2)
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ΦS

ΦS

ΦR

ΦR

Figure 4.4: Fluxes from the rotor and armature in flux lines blue and red, respectively

Since the single-phase synchronous machine dealt with has salient poles, the magnetic circuit will

have larger magnetic resistance in the q-axis then in the d-axis. Since Rd <Rq , the q-axis flux are

neglected due to the d-axis flux being larger than the q-axis flux. This dramatically simplifies the

analyzes of the machine behavior [13], [14].

The total flux produced is assumed only dependent upon the d-axis component of the resultant MMF

and the reluctance of that exact axis, as presented in (4.3).

φ≈ FRes,d

Rd
(4.3)

In the following calculation, it is assumed that the d-axis is aligned with the armature’s magnetic axis

at t = 0.
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Figure 4.5: Resultant MMF in the single-phase machine2

Since the counterclockwise MMF distribution and the rotor d- axis is in synchronism the angle β f

is constant. γ presents the angle between the pulsating armature MMF distribution aligned with

stationary s-axis and the counterclockwise and clockwise MMFs that together presents the behavior

of the pulsating MMF distribution. The angle is presented in (4.4). It is observed that γ will change by

following the rotation of the rotor.

γ=ωs t −β f (4.4)

The d-axis component of the resultant MMF is calculated by determining the d-axis components of

the rotor MMF, the counterclockwise armature MMF and the clockwise armature MMF.

FRes,d =FR +FS,d

=FR +FCCW
S cos(β f )+FCW

S cos(2ωs t −β f )
(4.5)

In accordance with (4.3), the machine’s flux is presented as in (4.6).

φtot = 1

Rd
(FR +FCCW

S cos(β f )+FCW
S cos(2ωs t −β f )) (4.6)

2Based on [14]
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The total flux is rotating at speed ωs . Since the armature winding is stationary, the total flux is passing

this winding at ωs . The armature winding’s flux linkage is therefore equal to (4.7).

ψS =p
2kw NSφTot cos(ωs t )

=
p

2kw NS

Rd
(FR cos(ωs t )+FCCW

S cos(β f )cos(ωs t )...

...+ 1

2
FCW

S cos(3ωs t −β f )+ 1

2
FCW

S cos(ωs t −β f )

(4.7)

By Faraday’s law, the induced voltage in the armature winding is the rate of change of the flux linkage

of that exact winding. The induced armature voltage is presented in (4.8).

eS =− d

d t
ψS

=
p

2kw NSωs

Rd
(FR sin(ωs t )+FCCW

S cos(β f )sin(ωs t )...

...+ 3

2
FCW

S sin(3ωs t −β f )+ 1

2
FCW

S sin(ωs t −β f ))

= Ee(1) sin(ωs t )+ECCW
(1) sin(ωs t )+ECW

(1) sin(ωs t −β f )+ECW
(3) sin(3ωs t −β f )

(4.8)

It is here observed that the induced voltage in the armature winding will contain both fundamental

and third harmonic terms. The third harmonic term is a result of the counterclockwise rotating

armature MMF distribution, FCCW
S , that induces second harmonic currents in the field winding and

the damper bars. The induced currents cause an oscillating rotor MMF aligned with the rotor’s d-axis

that is rotating at a fundamental frequency, ωs . The pulsating MMF is viewed as a counterclockwise

and clockwise MMF rotating at 3ωs and −ωs . The counterclockwise-rotating MMF and field MMF will

induce fundamental frequency voltage in the armature winding, while the clockwise rotating MMF

will induce fundamental- and third harmonic voltages in the same winding. The peak values of the

voltage are equal to ECW
(1) , Ee(1), ECW

1 and ECW
(3) , respectively [13].
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Chapter 5

Modeling Single-Phase Synchronous

Machine

Theory and modeling principles of the three-phase synchronous machine were presented in Chapter 3.

Three-phase AC quantities are transformed into a rotor reference frame and converted into two-phase

DC quantities. When the transformation is carried out for the three-phase inductance matrix, the de-

pendent rotor angle self-inductances of the armature windings and the rotor angle dependent mutual

inductances between the armature- and rotor windings becomes rotor angle invariant. This was one

of the primary motivations when developing the transformation presented by R. H. Park.

Theory and behavior of the single-phase synchronous machine were presented in Chapter 4. This

machine seems identical to the three-phase machine except for the number of armature phase-

windings, but its behavior is fundamentally different. The rotating MMF distribution of the three-

phase machine is induced by three phase-currents shifted 120 electrical degrees in time flowing in

three phase-windings located 120 degrees in space. The MMF distribution of the single-phase machine

is induced by a single phase-current flowing in a single phase-winding. The MMF distribution of

the single phase-winding will pulsate along with the magnetic axis of the armature winding. This

causes several difficulties when trying to analyze the instantaneous behavior of the single-phase

machine.

Since the single-phase synchronous machine is not provided with balanced three-phase windings in

the stator, the traditional Park equations introduced in Chapter 3 cannot be applied directly. Three

different methods have therefore been developed for modeling a single-phase synchronous machine

in a synchronous-synchronous rotary frequency converter.
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5.1 MODEL 1: ONE ARMATURE WINDING

The following section presents a mathematical model for determining the instantaneous time-domain

related behavior of a single-phase synchronous machine applying one armature phase-winding,

together with one field winding and one d- and one q-axis damper winding. The phase quantities for

the single-phase machine’s armature winding are applied directly, without any attempts to transform

any quantities to another frame of reference. The machine consists of two reference frames. The

stationary reference frame along the magnetic axis of the single armature phase-winding and the rotor

d −q-reference. The rotor circuits are identical to the ones presented for the three-phase synchronous

machine presented in Chapter 3. The single-phase synchronous machine is presented in 5.1. The

damper bars are located on the rotor poles, and the field winding is presented in the center of the

rotor.

Figure 5.1: Single-phase synchronous machine

The two reference frames of the machine in Fig. 5.1 are presented in Fig. 5.2.
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Figure 5.2: Single-phase synchronous machine with two systems of reference

The windings presented on each axis in Fig. 5.2 demonstrates the necessary number of voltage balance

equations. The rotor circuits are magnetically coupled to the armature circuit, and the field and d-axis

damper circuit are magnetically coupled to each other. The circuits on the rotor d-axis and the damper

circuit of the q-axis are decoupled.

5.1.1 Inductance

The armature inductance matrix of a three-phase synchronous machine, LS , was presented in Chapter

3. The armature inductance matrix for the single-phase machine contains only one armature wind-

ing. No mutual inductances between other armature windings occur, and the armature inductance

matrix has only the self-inductance of the single armature winding. The inductance is presented in

(5.1).

LS = Lss = Ll s +Lss0 +LssP cos(2θd ) (5.1)

The self-inductance contains a leakage inductance and a fixed inductance term, Ll s +Lss0, together

with a second harmonic term due to the salient-pole rotor configuration. The second harmonic term

will oscillate periodically along the fixed term with an amplitude equal to LssP .

The single-phase machine’s rotor is identical to the standard three-phase machine’s. There are mutual

inductances between the armature winding, the field winding and the damper bars of the rotor due

to magnetic coupling. The mutual inductance matrix between the armature to rotor windings are

identical to the transposed mutual inductance matrix between the rotor to armature windings, as

presented in (5.2).
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LSR = LT
RS =

[
Ls f P cos(θd ) LsDP cos(θd ) −LsQP sin(θd )

]
(5.2)

The rotor windings contain self-inductances and mutual inductances between windings located on

the same rotor reference axis. There are no mutual inductances between the windings located on the

d-and on the q-axis.

LR =


L f f L f D 0

L f D LDD 0

0 0 LQQ

 (5.3)

The single-phase synchronous machine’s inductance matrix is presented in (5.4).

L =


Lss(θd ) Ls f (θd ) LsD (θd ) LsQ (θd )

Ls f (θd ) L f f L f D L f Q

LsD (θd ) L f D LDD LDQ

LsQ (θd ) L f Q LDQ LQQ

 (5.4)

The inductances involving the armature winding are dependent upon the rotor position.

5.1.2 Magnetic Coupling

The magnetic coupling of the machine is presented by the machine’s flux linkages, as presented in

(5.5).


ψs

ψ f

ψD

ψQ

=


−Lss(θd ) Ls f (θd ) LsD (θd ) LsQ (θd )

−Ls f (θd ) L f f L f D 0

−LsD (θd ) L f D LDD 0

−LsQ (θd ) 0 0 LQQ

 ·


is

i f

iD

iQ

 (5.5)

It is observed that the armature flux linkage, ψs , is dependent upon the coupling between all machine

windings. The circuits located on the d- and q-axis are decoupled.
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5.1.3 Voltage Balance

By appreciating that induced voltage is the rate of change of flux linkage, the voltage balances for

each electric circuit in the machine presented in Fig 5.2 are obtained. It is observed that the damper

bars are short-circuited, leaving their terminal voltages equal to zero. The voltage balances for the

single-phase synchronous machine are presented in (5.6).

vs =−RS iS + d

d t
ψs

v f = R f i f +
d

d t
ψ f

vD = RD iD + d

d t
ψD = 0

vQ = RQ iQ + d

d t
ψQ = 0

(5.6)

5.1.4 Currents

The machine’s currents are obtained by appreciating the relationship between flux linkages and

currents, presented in (3.10). The inverse inductance matrix is calculated and presented in Appendix

E. The machine’s flux linkages are multiplied by the inverse inductance matrix, as presented in

(5.7).


is

i f

iD

iQ

=


−Ls(θd ) Ls f (θd ) LsD (θd ) LsQ (θd )

−Ls f (θd ) L f f L f D 0

−LsD (θd ) L f D LDD 0

−LsQ (θd ) 0 0 LQQ



−1

︸ ︷︷ ︸
L−1

·


ψS

ψ f

ψD

ψQ

 (5.7)

The inductances Lss , Ls f , LsD , LsQ are dependent upon the rotor angle, θd . This results in the matrix

elements of the inverse inductance matrix to be extensive, each depending on θd . The inverse

inductance matrix is presented in Appendix E. The first element in this matrix, here referred to as

a11 is presented in (5.8) for illustrating the rotor angle dependency of the inverse inductance matrix

elements.

a11 = A11 +B11 cos(θd )+C11 cos(2θd )+D11 cos(3θd )+ ...+K11 cos(10θd )

L11 +M11 cos(2θd )+N11 cos(4θd )+O11 cos(6θd )+P11 cos(8θd )+Q11 cos(10θd )
(5.8)
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A11, B11, C11, D11, E11, F11, G11, H11, I11, J11, K11, L11, M11, N11, O11, P11 and Q11 are constants made

up of the constant inductance terms presented in the inductance matrix of (5.4).

The equations for calculating the machine currents are rewritten from (5.7) and presented in (5.9).

anm presents the elements of L−1, where n and m denotes the row and column of the elements,

respectively. These elements are presented in Appendix E.

iS = a11ψS +a12ψ f +a13ψD +a14ψQ

i f = a21ψS +a22ψ f +a23ψD +a24ψQ

iD = a31ψS +a32ψ f +a33ψD +a34ψQ

iQ = a41ψS +a42ψ f +a43ψD +a44ψQ

(5.9)

5.1.5 Electromagnetic Power

The electromagnetic power induced by the single-phase synchronous machine is presented in (5.10).

The expression is based on that of the three-phase synchronous machine’s electromagnetic power,

presented in Section 3.9.

Pem = vs is −Rs i 2
s (5.10)

5.1.6 Model 1 - Overview

A simplified overview of an implemented rotary frequency converter model is viewed in Fig. 5.3. The

three-phase synchronous motor is applying the Park equations for a three-phase machine, while the

single-phase synchronous machine applies the single-phase machine equations for a machine viewed

in phase quantities with one armature phase-winding.
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Figure 5.3: Rotary frequency converter with Model 1 of the single-phase machine implemented

Three phase-voltages are applied to the three-phase synchronous motor’s terminals. Park transfor-

mation is carried out with respect to the motor’s rotor angle, as presented in (3.15), and DC voltages

are obtained. The DC voltages are applied for calculating the motor’s flux linkages based on voltage

balance, as presented in (3.19). The motor’s currents are calculated by multiplying the flux linkages,

in Fig. 5.3 presented as ψd q f , with the inverse motor’s rotor angle invariant inductance matrix. The

motor’s electromagnetic power, PemM , is obtained by applying (3.34). The motor power drives the

generator, and electromagnetic power is induced. Based on the equation of motion provided for a

motor-generator-set, presented in Section 5.4, the speed, and rotor angle for both the motor and

generator are obtained. The motor speed is used for calculating electromagnetic motor power, while

the motor’s rotor angle is applied for transforming the three-phase motor quantities to DC quantities

in a rotor reference frame. The generator rotor angle is used for calculating the elements of the inverse

inductance matrix presented in (5.7). The terminal voltage of the single-phase machine is obtained by

multiplying the single-phase current with a load.

41



CHAPTER 5. MODELING SINGLE-PHASE SYNCHRONOUS MACHINE NTNU

5.2 MODEL 2: TWO ROTATING FIELDS

The following section presents a developed set of equations presenting the instantaneous time-domain

related behavior of the single-phase synchronous machine viewing the pulsating armature MMF

distribution behavior as two rotating MMF distributions. A pulsating MMF distribution is commonly

viewed as two MMF distributions with constant amplitudes rotating at the same rotational velocity but

in opposite directions. These MMF distributions are in this section referred to as the counterclockwise-

and clockwise rotating MMF distributions. The theory behind the pulsating behavior of the armature

MMF is presented in Chapter 4.

The following implementation of a developed set of equations attempts to apply the two-MMF

distribution theory for simulating the single-phase synchronous machine’s behavior. Each rotating

MMF distribution is viewed as the result of three phase-currents flowing in the armature windings

of a three-phase machine. By changing the order of two phase-windings for a three-phase machine,

the MMF distribution will rotate in either counterclockwise- or clockwise direction. If the phase-a,

phase-b and phase-c currents always flow in their respective phase windings, the MMF distribution of

the machine will rotate in a counterclockwise direction. If phase winding b and -c changes position,

the resulting MMF distribution will rotate in clockwise direction. The approach is presented in Fig. 5.4

as two stator configurations. The counterclockwise- and clockwise MMF distributions, FCCW
s and

FCW
s , are observed in the left- and rightmost machine stator in Fig. 5.4, respectively.

Figure 5.4: Two fictitious machines inducing two MMF distributions

The single-phase machine is therefore viewed as two fictitious three-phase synchronous machines

with three armature phase-windings each, as presented in Fig. 5.4. Phase-a of both machines are

connected in series, while phase-b and phase-c of the first machine are connected in series with

phase-c and phase-b of the second machine, respectively. The rotor of the single-phase machine,
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together with its d- and q-axis reference frame, is only depicted in the first fictitious three-phase

machine. Depicting the pulsating armature MMF distribution’s behavior is the reason for the two

stator configurations. The two fictitious machines are "laid on top" of each other. Both machines are

magnetically coupled to the rotor, but not with each other.

5.2.1 Counterclockwise Rotating MMF Distribution

The counterclockwise-rotating MMF distribution is locked to the rotor’s MMF distribution. The

armature counterclockwise- and rotor MMF distribution are therefore rotating at synchronism and

behaving exactly like a regular three-phase synchronous machine.

The self- and mutual inductances for the armature phase-windings are presented in (5.11).

LCCW
S =


Lss0 +LssP cos(2θd ) −Lss0

2 −LssP cos(2(θd + π
6 )) −Lss0

2 −LssP cos(2(θd + 5π
6 ))

−Lss0
2 −LssP cos(2(θd + π

6 )) Lss0 +LssP cos(2(θd − 2π
3 )) −Lss0

2 −LssP cos(2(θd − π
2 ))

−Lss0
2 −LssP cos(2(θd + 5π

6 )) −Lss0
2 −LssP cos(2(θd − π

2 )) Lss0 +LssP cos(2(θd − 4π
3 ))


(5.11)

The mutual inductances between the armature phase windings and the rotor windings are presented

in (5.12).

LCCW
SR =


Ls f P cos(θd ) LsDP cos(θd ) −LsQP sin(θd )

Ls f P cos(θd − 2π
3 ) LsDP cos(θd − 2π

3 ) −LsQP sin(θd − 2π
3 )

Ls f P cos(θd − 4π
3 ) LsDP cos(θd − 4π

3 ) −LsQP sin(θd − 4π
3 )

 (5.12)

5.2.2 Clockwise Rotating MMF Distribution

The clockwise rotating MMF distribution rotates in opposite direction of the single-phase machine’s

rotor. During steady-state the rotor is rotating at synchronous velocity and the clockwise rotating

MMF distribution is rotating at double synchronous speed compared to the rotor.

The self- and mutual inductances for the armature phase-windings are presented in (5.13). It is

observed that the location of the phase-b and phase-c inductances have been changed compared to

those presented in (5.11), allowing the MMF distribution of the armature to rotate in the opposite

direction compared to the rotor.
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LCW
S =


Lss0 +LssP cos(2θd ) −Lss0

2 −LssP cos(2(θd + 5π
6 )) −Lss0

2 −LssP cos(2(θd + π
6 ))

−Lss0
2 −LssP cos(2(θd + 5π

6 )) Lss0 +LssP cos(2(θd − 4π
3 )) −Lss0

2 −LssP cos(2(θd − π
2 ))

−Lss0
2 −LssP cos(2(θd + π

6 )) −Lss0
2 −LssP cos(2(θd − π

2 )) Lss0 +LssP cos(2(θd − 4π
3 ))


(5.13)

The mutual inductances between the armature phase windings and the rotor windings are presented

in (5.14). The same change of phase-winding location is observed compared to (5.12).

LCCW
SR =


Ls f P cos(θ) LsDP cos(θ) LsQP sin(θ)

Ls f P cos(θ− 4π
3 ) LsDP cos(θ− 4π

3 ) LsQP sin(θ− 4π
3 )

Ls f P cos(θ− 2π
3 ) LsDP cos(θ− 2π

3 ) LsQP sin(θ− 2π
3 )

 (5.14)

5.2.3 Two Reference Frames

The method of transforming the quantities of the stationary three-phase armature windings to the

rotor frame of reference was presented in Chapter 3 for a three-phase synchronous machine. The

method is identical when dealing with the two fictitious machines with different configurations. Park’s

matrix was presented in (3.15) and is for simplicity renamed and rewritten in (5.15).

PCCW = 2

3


cos(θ) cos(θ− 2π

3 ) cos(θ− 4π
3 )

−sin(θ) −sin(θ− 2π
3 ) −sin(θ− 4π

3 )
1
2

1
2

1
2

 (5.15)

For the counterclockwise rotating MMF distribution induced by the currents from the first fictitious

machine, the three-phase quantities for the armature are transformed by appreciating the relation-

ships presented in (3.17) and (3.18).

The resulting inductance matrices for the counterclockwise fictitious machine after when referenced

to the rotor is presented in (5.16) and (5.17).
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PCCW LCCW
S (PCCW )−1 =


Ll s + 3

2 (Lss0 +LssP ) 0 0

0 Ll s + 3
2 (Lss0 −LssP ) 0

0 0 Ll s +Lss0 −2LssP



=


LCCW

d 0 0

0 LCCW
q 0

0 0 LCCW
0


(5.16)

PCCW LCCW
SR =


Ls f P LsDP 0

0 0 LsQP

0 0 0

 (5.17)

For the clockwise rotating MMF distribution induced by the currents from the second fictitious

machine, the three-phase quantities can be transformed to an orthogonal reference frame identical to

the rotor’s reference, but rotating in a clockwise direction. The Park’s matrix in (5.15) is reformulated

for a clockwise rotating reference frame and presented in (5.18).

PCW = 2

3


cos(θ) cos(θ− 4π

3 ) cos(θ− 2π
3 )

−sin(θ) −sin(θ− 4π
3 ) −sin(θ− 2π

3 )
1
2

1
2

1
2

 (5.18)

The resulting inductance matrices for the clockwise fictitious machine after referenced to the clockwise

rotating reference is presented in (5.19) and (5.20).

PCW LCW
S (PCW )−1 =


Ll s + 3

2 (Lss0 +LssP ) 0 0

0 Ll s + 3
2 (Lss0 −LssP ) 0

0 0 Ll s +Lss0 −2LssP



=


LCCW

d 0 0

0 LCCW
q 0

0 0 LCCW
0


(5.19)

PCW LCW
SR =


Ls f P LsDP 0

0 0 LsQP

0 0 0

 (5.20)
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The two reference frames are presented in Fig. 5.5.

Figure 5.5: Counterclockwise- and clockwise rotating reference frame with their stationary magnetic axes

Self-inductance of the d- and q-axis for the armature windings are observed. Also, there will be

mutual inductances between the armature windings of each axis and the field and damper bars on

the respective axis.

5.2.4 One Reference Frame

For a three-phase synchronous machine, the transformation from a three-phase stationary reference

frame and a two-phase rotating reference frame to a rotating two-phase reference frame is carried out

for several reasons. One of the major reasons is the fact that the inductance matrices, and therefore

also the voltage balance equations and the currents from flux linkages equations, becomes rotor angle

invariant. Hence, the differential equations become less complicated to solve.

For the single-phase machine, viewed as two fictitious machines, the same situation as that of the

three-phase machine is observed. It is easier to deal with the machines equations if both machines are

referenced to the same reference frame. Since the rotor is rotating in a counterclockwise direction, it is

useful to reference both fictitious machines to a counterclockwise rotating rotor d −q-reference frame.

For the two machines, this is carried out by applying the Park’s matrix that was presented for the first

fictitious machine in (5.15). The transformation is carried out for both machines. The inductances for

the counterclockwise machine is here rewritten for clarity, together with the transformed inductance

matrices for the clockwise rotating machine.
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(PCCW )LCCW
S (PCCW )−1 =


Ll s + 3

2 (Lss0 +LssP ) 0 0

0 Ll s + 3
2 (Lss0 −LssP ) 0

0 0 Ll s +Lss0 −2LssP



=


LCCW

d 0 0

0 LCCW
q 0

0 0 LCCW
0


(5.21)

PCCW LCCW
SR =


Ls f P LsDP 0

0 0 LsQP

0 0 0

 (5.22)

(PCCW )LCW
S (PCCW )−1 =


Ll s + 3

2 (Lss0 +LssP cos(4θd )) −3
2 LssP sin(4θd ) 0

−3
2 LssP sin(4θd ) Ll s + 3

2 (Lss0 −LssP cos(4θd )) 0

0 0 Ll s



=


LCW

d LCW
d q 0

LCW
d q LCW

q 0

0 0 LCW
0


(5.23)

PCW LCW
SR =


Ls f P cos(2θd ) LsDP cos(2θd ) −LsQP sin(2θd )

−Ls f P sin(2θd ) −LsDP sin(2θd ) −LsQP cos(2θd )

0 0 0

 (5.24)
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Figure 5.6: Counterclockwise rotating reference frame

5.2.5 Amplitude Size of MMF Distributions

The counterclockwise- and clockwise rotating MMF distributions combined enables the behavior of

the pulsating MMF distribution to be observed. The trigonometric relation in which the theory of two

rotating MMFs combined results in a pulsating MMF presented in (3.3). The MMF distribution of a

single phase-winding are presented in (3.4), and is rewritten in (5.25).

FS(1) = 1

2
Fmax cos(α−ωe t )︸ ︷︷ ︸

FCCW
S(1)

+ 1

2
Fmax cos(α+ωe t )︸ ︷︷ ︸

FCW
S(1)

(5.25)

The amplitude of the MMF distribution from (5.25) is presented in (3.1), and is rewritten in (5.26).

Fmax = 4

π
(

kw NS

P
)IS (5.26)

The single-phase synchronous motor modeling method presented above applies two three-phase

synchronous machines, each with a rotating MMF distribution, to simulate the pulsating MMF

distribution occurring in the single phase-winding. The rotating MMF distribution from each machine

has an amplitude of 3
2Fmax , where Fmax equals the peak MMF distribution of a single phase-winding.

Adjustments are therefore necessary for enabling the two fictitious machines to together result in a

pulsating MMF distribution with the correct peak value. The relationship between MMF distribution

amplitudes for counterclockwise- and clockwise fictitious machines, three-phase "regular" machines

and single phase-winding are presented in (5.27).
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FCCW
S(1) =FCW

S(1) =
1

2
Fmax = 1

2

2

3
F3ph = 1

3
F3ph (5.27)

The number of turns for each armature winding in the two fictitious machines are therefore decreased

by a factor of 3, enabling the two machines to induce a MMF distribution that in total results in a

pulsating MMF distribution with a peak value equal to Fmax .

NCCW
S = NCW

S = 1

3
NS(3ph) (5.28)

Self- and mutual inductances for armature windings are the ratio between flux linkages and currents

involved. These inductances are proportional to the product of the involved windings’ number of

turns. The self-inductance of a winding and the mutual inductance between two armature windings

are therefore proportional to the square of the respective winding’s number of turns. For the MMF

distribution relationship presented in (5.27), the number of turns for the involved armature windings

are as presented in (5.28). The stator inductance matrices LCCW
S and LCW

S presented in (5.16) and

(5.19) are therefore decreased with a factor of kS = 32 = 9.

LCW
S(new ) =

1

9
LCW

S

LCCW
S(new ) =

1

9
LCCW

S

(5.29)

The mutual inductances between the stator and rotor windings are also proportional to the involved

winding’s number of turns. The rotor windings are not changed in any way when simulating the

pulsating MMF distribution applying two fictitious machines. The mutual stator to rotor inductances

matrices, LCCW
SR and LCW

SR presented in (5.17) and (5.20) are therefore decreased with a factor of

KSR = 3.

LCW
SR(new ) =

1

3
LCW

SR

LCCW
SR(new ) =

1

3
LCCW

SR

(5.30)
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5.2.6 Model Equations

5.2.6.1 Voltage Equations

The armature voltage balance equations for a three-phase synchronous machine with phase quantities

are presented in (3.13) of Chapter 3. These equations are referenced to rotor by applying Park’s matrix

presented in (3.19). The calculations are presented in Appendix A. The same procedure is carried out

for the two fictitious armature configurations presented above inducing the counterclockwise and

clockwise rotating MMF distribution. The voltage balances for the counterclockwise rotating and

clockwise rotating fictitious machines are presented in (5.31) and (5.32). The voltage balances for the

rotor armature circuits are repeated in (5.33).

vCCW
d =−Rs iCCW

d + d

d t
ψCCW

d −ωrψ
CCW
q (5.31a)

vCCW
q =−Rs iCCW

q + d

d t
ψCCW

d +ωrψ
CCW
d (5.31b)

vCW
d =−Rs iCW

d + d

d t
ψCW

d −ωrψ
CW
q (5.32a)

vCW
q =−Rs iCW

q + d

d t
ψCW

d +ωrψ
CW
d (5.32b)

v f = R f i f +
d

d t
ψ f (5.33a)

0 = RD iD + d

d t
ψD (5.33b)

0 = RQ iQ + d

d t
ψQ (5.33c)

5.2.6.2 Flux Linkages

The flux linkages applied for expressing the voltage balance for both fictitious machines in (5.31) and

(5.32) are defined in (5.34) and (5.35). The flux linkages for the counterclockwise rotating machine

are identical to the regular three-phase synchronous machine’s. For the clockwise rotating machine,
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it exists mutual magnetic coupling between the d- and q-axis. Chapter 3 presents these axes to be

decoupled because they are located 90 electrical degrees apart. For the clockwise rotating machine,

which induces a MMF distribution rotating at double rotor speed relative to the rotor, this decoupling

doesn’t occur.


ψCCW

d

ψCCW
q

ψCCW
0

=− 1

kS


LCCW

d 0 0

0 LCCW
q 0

0 0 LCCW
0


︸ ︷︷ ︸

LCCW
s,d q


iCCW

d

iCCW
q

iCCW
0

+ 1

kSR


Ls f P LsDP 0

0 0 LsQP

0 0 0


︸ ︷︷ ︸

LCCW
SR ,d q


i f

iD

iQ


(5.34)


ψCW

d

ψCW
q

ψCW
0

=− 1

kS


Ll s + 3

2 (Lss0 +LssP cos(4θd )) −3
2 LssP sin(4θd ) 0

−3
2 LssP sin(4θd ) Ll s + 3

2 (Lss0 −LssP cos(4θd )) 0

0 0 Ll s


︸ ︷︷ ︸

LCW
S,d q


iCW

d

iCW
q

iCW
0



+ 1

kSR


Ls f P cos(2θd ) LsDP cos(2θd ) −LsQP sin(2θd )

−Ls f P sin(2θd ) −LsDP sin(2θd ) −LsQP cos(2θd )

0 0 0


︸ ︷︷ ︸

LCW
SR


i f

iD

iQ


(5.35)

The flux linkages related to the rotor circuits are assumed to be the result of magnetic coupling between

the armature of both fictitious machines and the rotor circuits. The result is presented in (5.36).


ψ f

ψD

ψQ

=− 1

kSR

3

2


Ls f P 0 0

LsDP 0 0

0 LsQP 0


︸ ︷︷ ︸

(LCCW
SR ,d q )T


iCCW

d

iCCW
q

iCCW
0

− 1

kSR

3

2


Ls f P cos(2θd ) −Ls f P sin(2θd ) 0

LsDP cos(2θd ) −LsDP sin(2θd ) 0

−LsQP sin(2θd ) −LsQP cos(2θd ) 0


︸ ︷︷ ︸

(LCW
SR ,d q )T


iCW

d

iCW
q

iCW
0



+


L f f L f D 0

L f D LDD 0

0 0 LQQ


︸ ︷︷ ︸

LR


i f

iD

iQ



(5.36)

51



CHAPTER 5. MODELING SINGLE-PHASE SYNCHRONOUS MACHINE NTNU

By applying the same base system when comparing stator and rotor quantities as presented in Chapter

3, the equations for flux linkages are rewritten and presented in (5.37).



ψCCW
d

ψCCW
q

ψCCW
0

ψCW
d

ψCW
q

ψCW
0

ψ f

ψD

ψQ



=


LCCW

S,d q 0 LCCW
SR ,d q

0 LCW
S,d q LCW

SR ,d q

(LCCW
SR ,d q )T (LCW

SR ,d q )T LR


︸ ︷︷ ︸

Ld q



iCCW
d

iCCW
q

iCCW
0

iCW
d

iCW
q

iCW
0

i f

iD

iQ



(5.37)

The inductance matrices in Ld q , observed in (5.37), are presented in Appendix F.

5.2.6.3 Current Equations

The currents of the two fictitious machine systems are extracted by calculating the inverse inductance

matrix of the system, L−1
d q . L−1

d q is a singular matrix, and the inverse matrix cannot be calculated. The

complete inductance matrix is therefore divided into two inductance matrices with 6x6 elements

each. These matrices inversed are presented in (5.38) and (5.39).



iCCW
d

iCCW
q

iCCW
0

iCCW
f

iCCW
D

iCCW
Q


=

 LCCW
S,d q LCCW

SR ,d q

(LCCW
SR ,d q )T LR

−1

︸ ︷︷ ︸
(LCCW

d q )−1



ψCCW
d

ψCCW
q

ψCCW
0

ψ f

ψD

ψQ


(5.38)



iCW
d

iCW
q

iCW
0

iCW
f

iCW
D

iCW
Q


=

 LCW
S,d q LCW

SR ,d q

(LCW
SR ,d q )T LR

−1

︸ ︷︷ ︸
(LCW

d q )−1



ψCW
d

ψCW
q

ψCW
0

ψ f

ψD

ψQ


(5.39)
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The elements of (LCCW
d q )−1 and (LCW

d q )−1 are presented in Appendix G. It is here observed that (LCCW
d q )−1

contains only rotor angle invariant elements, while (LCW
d q )−1 contains several elements which varies in

accordance with the position of the rotor.

It is noted that the rotor currents i f , iD and iQ are derived by calculating (5.37). The calculations pre-

sented in (5.38) and (5.39) do not calculate the rotor currents directly, because both MMF distributions,

counterclockwise- and clockwise rotating, interact with the rotor circuits. The rotor currents extracted

by these equations are therefore the currents to the counterclockwise- and clockwise rotating MMF

distribution, respectively. The rotor currents are obtained by appreciating the relationship between

the rotor flux linkages, the armature currents from each fictitious machine and the rotor currents as

presented in (5.36). The systems rotor currents are extracted by solving (5.36) with respect to the rotor

currents. The result is presented in (5.40).


i f

iD

iQ

=


L f f L f D 0

L f D LDD 0

0 0 LQQ


−1

︸ ︷︷ ︸
L−1

R


ψ f

ψD

ψQ

+


L f f L f D 0

L f D LDD 0

0 0 LQQ


−1

︸ ︷︷ ︸
L−1

R

1

kSR

3

2


Ls f P 0 0

LsDP 0 0

0 LsQP 0


︸ ︷︷ ︸

(LCCW
SR ,d q )T


iCCW

d

iCCW
q

iCCW
0



+


L f f L f D 0

L f D LDD 0

0 0 LQQ


−1

︸ ︷︷ ︸
L−1

R

1

kSR

3

2


Ls f P cos(2θd ) −Ls f P sin(2θd ) 0

LsDP cos(2θd ) −LsDP sin(2θd ) 0

−LsQP sin(2θd ) −LsQP cos(2θd ) 0


︸ ︷︷ ︸

(LCW
SR ,d q )T


iCW

d

iCW
q

iCW
0



(5.40)

5.2.6.4 Electromagnetic Power

The terminal power induced by a three-phase synchronous machine is presented in (3.32) and rewrit-

ten with respect to rotor referenced quantities in (3.33). The same procedure is carried out when

obtaining an expression for the power output of the single-phase synchronous machine modeled with

two rotating MMF distributions. The terminal power in rotor referenced quantities are presented in

(5.41).
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Pt =3

2
((iCCW

d

d

d t
ψCCW

d + iCCW
q

d

d t
ψCCW

q +2iCCW
0

d

d t
ψCCW

0 )︸ ︷︷ ︸
Armature magnetic power for CCW MMF

+ 2

P
ωr (ψCCW

d iCCW
q −ψCCW

q iCCW
d )︸ ︷︷ ︸

Air-gap power for CCW MMF

−

((iCCW
d )2 + (iCCW

q )2 +2(iCCW
0 )2)Rs)︸ ︷︷ ︸

Ohmic losses for CCW MMF

+

3

2
((iCW

d

d

d t
ψCW

d + iCW
q

d

d t
ψCW

q +2iCW
0

d

d t
ψCW

0 )︸ ︷︷ ︸
Armature magnetic power for CW MMF

+ 2

P
ωr (ψCW

d iCW
q −ψCW

q iCW
d )︸ ︷︷ ︸

Air-gap power for CW MMF

−

((iCW
d )2 + (iCW

q )2 +2(iCW
0 )2)Rs)︸ ︷︷ ︸

Ohmic losses for CW MMF

(5.41)

Steady-state machine performance is assumed, and the electromagnetic power is defined as the

air-gap power induced by the machine. Ohmic losses are therefore neglected, and the electromagnetic

power is determined as presented in (5.42).

Pem =3

2

2

P
ωr (ψCCW

d iCCW
q −ψCCW

q iCCW
d +ψCW

d iCW
q −ψCW

q iCW
d ) (5.42)

5.2.7 Model 2 - Overview

A simplified overview of an implemented rotary frequency converter model is viewed in Fig. (5.7). The

three-phase synchronous motor is applying the Park equations for a three-phase machine, while the

single-phase synchronous machine applies the single-phase machine equations developed for two

rotating armature MMF distributions.
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Figure 5.7: Rotary frequency converter with Model 2 of the single-phase synchronous machine implemented

The three-phase synchronous motor is identical to the one presented in Section 5.1 when observing

the converter applying the Model 1 implementation of the single-phase synchronous generator in

Fig. 5.3. The motor drives the generator, and electromagnetic power is induced. The dynamic

interaction between the two machines, presented in Section 5.4, is applied for extracting the motor-

and generator rotor speed, ωM and ωG , and rotor angle, θd M and θdG . The generator’s rotor angle

is applied to calculate the elements of the inverse clockwise inductance matrix, and to carry out

the desired transformations of both armature currents and -voltages. The counterclockwise- and

clockwise obtained flux linkages and currents for the single-phase machine are applied to calculate

the electromagnetic power presented in (5.42). The generator’s terminal voltages are calculated based

on the connected load and the armature currents for each fictitious machine.
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5.3 MODEL 3: THREE-PHASE MACHINE WITH ONE OPEN-CIRCUITED PHASE

The following section is based on single-phase synchronous machine modeling principles mentioned

in [9], [10] and [12], and presented in detail in [7], [8] and [11]. The modeling method was applied

with minor changes in [6] when a full rotary frequency converter where simulated. The following

presentation of this method applies the equations obtained during work presented in [6].

A three-phase synchronous machine with three-phase currents flowing in their respective armature

phase-windings induces a rotating armature MMF distribution. If one of these windings were to be

open-circuited, no current would flow in that exact winding. If a load is connected between the two

remaining phases, the two windings will induce one pulsating MMF distribution each. The windings

are located 120 degrees apart in space, and the total MMF distribution of the three-phase machine is

therefore pulsating. The following modeling method presents a system where machine parameters

for a single-phase synchronous machine are adjusted so that a three-phase synchronous machine

with one phase left idle and a load connected between the remaining two phases models the dynamic

behavior of a single-phase machine. The idea is illustrated in Fig. 5.8.

s

s'

a
a'

b'

b

c

c'

Fss'(1ph)
Fss'(3ph)

Fcc'

Fbb'

s-axis a-axis

Figure 5.8: Single-phase machine viewed as three-phase machine with phase-a left idle1

The leftmost machine in Fig. 5.8 illustrates a conventional single-phase machine with one armature

phase-winding. The MMF distribution Fss′(1ph) is pulsating along the phase’s magnetic s-axis. The

rightmost machine presents the same situation, but the two armature windings now induce the

pulsating MMF distribution Fss′(3ph). For the following presentation, the conventional single-phase

machine and the three-phased single-phase machine will be labeled (1) and (3), respectively.

1Based on [7]
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5.3.1 The Equivalent Single-Phase Machine

The three-phased single-phase machine is from now on referred to as the equivalent single-phase

machine. The armature windings of the equivalent machine are presented in Fig. 5.9. As observed,

two phases are connected through a load. The windings share a common load current, referred to as

is .

is=ib

is=-ic

ia=0
is

vb

vc

N
vs=vb-vc

Figure 5.9: Unbalanced three-phase machine2

The three-phase currents for the equivalent single-phase machine are presented in (5.43). The load

currents for phase-b and phase-c are shared, while the load current for phase-a is zero.

ia = 0 , ib = is , ic =−is (5.43)

The terminal voltage for the equivalent single-phase machine is referred to as vs and is defined as the

difference between the original voltages for phase-a and phase-b. The terminal voltage is presented in

(5.44).

vs = vb − vc (5.44)

5.3.2 Model Equations

The following calculations present the model equations for the equivalent single-phase machine.

The motivation for deriving these equations is to describe the instantaneous time-domain related

2Based on [7]

57



CHAPTER 5. MODELING SINGLE-PHASE SYNCHRONOUS MACHINE NTNU

behavior of the single-phase synchronous machine by applying the model equations of the three-

phase machine as presented in Chapter 3.

5.3.2.1 Rotor Referenced Equivalent Single-Phase Machine Currents

The armature- and rotor quantities of the equivalent single-phase machine are referenced to a

stationary- and a rotating frame, respectively. It is preferred to transform all quantities to a rotor

reference frame, as carried out for the three-phase synchronous machine in Chapter 3. The equivalent

single-phase currents were presented in (5.43). The three-phase currents are described by applying

the single-phase current is , and these currents are referenced to the rotor by applying (3.17). The

resulting rotor referenced currents are presented in (5.45).


id(3)

iq(3)

i0(3)

= 2

3


cos(θd ) cos(θd − 2π

3 ) cos(θd − 4π
3 )

−sin(θd ) −sin(θd − 2π
3 ) −sin(θd − 4π

3 )
1
2

1
2

1
2




ia = 0

ib = is

ic =−is



= 2

3
is


cos(θd − 2π

3 )−cos(θd − 4π
3 )

−sin(θd − 2π
3 )+ sin(θd − 4π

3 )

0


(5.45)

The d- and q-axis currents are rewritten by applying the Simpson´s theorem presented in (5.46).

sin(α±β) = sin(α)cos(β)±cos(α)sin(β) (5.46a)

cos(α±β) = cos(α)cos(β)∓ sin(α)sin(β) (5.46b)

The d- and q-axis currents for the equivalent single-phase machine are presented in (5.47).


id(3)

iq(3)

i0(3)

=


2p
3

is sin(θd )
2p
3

is cos(θd )

0

 (5.47)
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5.3.2.2 Voltage Balance

The armature voltage balance equations for the equivalent single-phase machine’s applied phase-

windings are presented in (5.48). Phase-a is here assumed non-active because the phase is open-

circuited and no current is flowing through the phase-a winding.

vb =−RS ib +
d

d t
ψb (5.48a)

vc =−RS ic + d

d t
ψc (5.48b)

The voltage balance for the equivalent single-phase machine is obtained by appreciating the defined

terminal voltage for the equivalent single-phase machine presented in (5.44). The resulting voltage

balance is presented in (5.49).

vs = (vb − vc ) =−RS(ib − ic )+ d

d t
(ψb −ψc )

=−2RS is + d

d t
(ψb −ψc )

(5.49)

5.3.2.3 MMF Distribution for the Equivalent Single-Phase Machine

The MMF distribution for a single phase-winding is presented in (3.1). The peak of the distribution is

presented in (5.50).

FS(1) = 4

π
(

kw NS

P
)iS (5.50)

The peak MMF distribution can be resolved into two components with peak values along the d- and

q-axis, respectively. This is viewed in Fig. 5.10. The armature MMF distribution is lagging the d-axis,

which is aligned with the rotor field, with the rotor angle θd . The armature MMF distribution is

pulsating aligned with the system’s reference axis [32].
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d-axis

q-axis

Fs=Fmax

θd

Fs,d=Fmaxcos(θd)

Fs,q=-Fmaxsin(θd)

Figure 5.10: Components of the MMF distribution along the d- and q-axis3

The MMF distribution components for the single-phase synchronous machine are presented in

(5.10) with respect to the single phase-current, is , and the single phase-winding’s number of turns,

N(1).

Fs,d(1) =
4

π

kw N(1)

P
is cos(θd )

Fs,q(1) =− 4

π

kw N(1)

P
is sin(θd )

(5.51)

The resulting d- and q-axis MMF distribution for the equivalent single-phase machine when applying

the single-phase machine’s current, as shown in (5.45), are presented in (5.52) [7].

Fs,d(3) =
4

π

kw N(3)

P

3

2
id(3) =

4

π

kw N(3)

P

p
3is cos(θd − π

2
)

Fs,q(3) =− 4

π

kw N(3)

P

3

2
iq(3) =− 4

π

kw N(3)

P

p
3is sin(θd − π

2
)

(5.52)

Based on derivations presented in [7] and [8], the magnetic reference axis of the single-phase machine

is located 90 electrical degrees ahead of the reference magnetic axis of the equivalent single-phase

machine. A 90 electrical degrees rotation in space is therefore applied to the single-phase machine’s

3Based on [32]
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MMF distribution components presented in (5.51). The resulting MMF distributions for the single-

phase machine and the equivalent single-phase machine with the same reference frames are presented

in (5.53).

Fs,d(1) =
4

π

kw N(1)

P
is cos(θd − π

2
)

Fs,q(1) =− 4

π

kw N(1)

P
is sin(θd − π

2
)

(5.53a)

Fs,d(3) =
4

π

kw N(3)

P

p
3is cos(θd − π

2
)

Fs,q(3) =− 4

π

kw N(3)

P

p
3is sin(θd − π

2
)

(5.53b)

5.3.3 Parameter Adjustments for the Equivalent Single-Phase Machine

The equivalent single-phase machine, presented in Fig. 5.9, is applied for reflecting the time-domain

related behavior of the single-phase machine. It is observed that the equivalent single-phase machine

is a three-phase machine with unbalanced loading. Parameters for the single-phase machine are

therefore necessarily adjusted when applying the equivalent single-phase machine. The rotor circuits

for the single-phase are assumed to be equal to the rotor circuits used for the equivalent single-phase

machine. Parameters describing rotor circuits quantities are therefore not adjusted.

5.3.3.1 Turns per Winding

The MMF distribution components of the single-phase machine and the equivalent single-phase

machine are presented in (5.53). To receive the same dynamic behavior from both machines, the MMF

distribution components have to be of the same magnitude. The equivalent single-phase machine’s

distributions are a factor
p

3 larger than those of the single-phase machine. The number of turns per

winding for the equivalent single-phase machine is therefore assumed to be a factor of
p

3 smaller

than that of the single-phase machine. The relationship between the number of turns per winding for

the single-phase- and equivalent single-phase machine is presented (5.54).

N(3) = 1p
3

N(1) (5.54)
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5.3.3.2 Inductance

Self- and mutual inductances for windings, which is the ratio between flux linkages and currents in-

volved, are proportional to the product of the involved windings’ number of turns. The self-inductance

of a winding and the mutual inductance between two armature windings are therefore proportional to

the square of the respective armature winding’s number of turns. The magnetizing inductance of the d-

and q-axis windings are defined in (3.21a) and (3.21b). Since both Lss0 and LssP are proportional to the

square of the number of turns per winding, the magnetizing inductances also depend on the squared

of turns per winding. The resulting inductance relationship between the single-phase machine and

the equivalent single-phase machine are presented in (5.55).

Lmd(3) =
1

3
Lmd(1) (5.55a)

Lmq(3) = 1

3
Lmq(1) (5.55b)

The leakage inductance is assumed the same for every winding in the equivalent single-phase machine.

The equivalent single-phase machine, containing two current conducting windings, has a leakage

inductance that is half of that of the single-phase winding. This is based on the fact that the same

current is loaded for both the equivalent- and the single-phase machine. The leakage inductance

relationship between the equivalent- and the single-phase machine are presented in (5.56).

Ll s(3) =
1

2
Ll s(1) (5.56)

The synchronous d- and q-axis inductances for the equivalent single-phase machine are defined as

presented in (5.57).

Ld(3) =
1

2
Ll s(1) +

1

3
Lmd(1) (5.57a)

Lq(3) = 1

2
Ll s(1) +

1

3
Laq(1) (5.57b)

The sub-transient- and transient inductances for the d- and q-axis are defined in (3.29). By appreciating

the changes of (5.57) when applying parameters to the equivalent single-phase machine, subtransient-

and transient inductances are obtained. These are presented in (5.58) and (5.59). The leakage

62



CHAPTER 5. MODELING SINGLE-PHASE SYNCHRONOUS MACHINE NTNU

inductances for the rotor electrical circuits, Ll f , LlD and LlQ , are unchanged.

L
′
d(3) =

1

2
Ll s(1) +

1
3 Lmd(1)Ll f

1
3 Lmd(1) +Ll f

(5.58a)

L
′
q(3) =

1

2
Ll s(1) +

1

3
Lmq(1) (5.58b)

L
′′
d(3) =

1

2
Ll s(1) +

1
3 Lmd(1)

Ll D Ll f

Ll D+Ll f

1
3 Lmd(1) + LlD Ll f

LlD+Ll f

(5.59a)

L
′′
q = 1

2
Ll s(1) +

1
3 Lmq(1)LlQ

1
3 Lmq(1) +LlQ

(5.59b)

5.3.3.3 Armature Resistance

The armature resistance is, as the leakage inductance, assumed equal for every winding. The load

current for the equivalent single-phase machine is flowing through two windings. The armature

resistance is therefore assumed to be half of that of the single-phase machine. The ohmic losses of the

armature circuits are then equal for the equivalent- and single-phase machine. The relationship is

presented in (5.60).

RS(3) = 1

2
RS(1) (5.60)

The relationship between armature resistance for the single-phase- and the equivalent single-phase

machine is also presented in (5.48). It is here observed that the armature resistance for the equivalent

single-phase machine is twice the size of the armature resistance for the single-phase machine.

5.3.3.4 Time Constants

The time constants for a synchronous machine were presented in Chapter 3. When adjusting machine

inductances and resistances for modeling the equivalent single-phase machine, the machines time

constants will also change based on the time constant definitions presented in (3.31). The new time
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constants for the equivalent single-phase machine are presented in (5.61).

T
′
d0(3) =

Ll f + 1
3 Lmd(1)

R f
(5.61a)

T
′′
d0(3) =

LlD +
1
3 Lmd(1)Ll f

ll f + 1
3 Lmd(1)

RD
(5.61b)

T
′′
q0(3) =

LlQ + 1
3 Lmq(1)

RQ
(5.61c)

5.3.3.5 Adjusted Parameters

Parameters for the single-phase synchronous machine is presented in Appendix C Table C.1 and

C.2. Parameters coinciding with the electrical circuits of the single-phase machine is calculated and

presented in Appendix C, Table C.3.

Parameters for the single-phase synchronous machine are adjusted based on calculations carried out

in Chapter 5 and presented in (5.57), (5.58), (5.59) and (5.61). The adjusted parameters are presented

in Table 5.1. Label (1) and (3) denote the given single-phase machine’s parameters and the calculated

equivalent single-phase machine’s parameters, respectively.

Table 5.1: Calculated Parameters for the Equivalent Single-Phase Synchronous Machine

Parameter Unit SPSM Value Equivalent SPSM Value

Armature resistance pu rS(1) 0.0018 rS(3) 0.000875

Leakage inductance pu Ll s(1) 0.096 Ll s(3) 0.0480

d-axis synchronous inductance pu Ld(1) 1.02 Ld(3) 0.3560

d-axis transient inductance pu L
′
d(1) 0.12 L

′
d(3) 0.0708

d-axis sub-transient inductance pu L
′′
d(1) 0.1 L

′′
d(3) 0.052

q-axis synchronous inductance pu Lq(1) 0.47 Lq(3) 0.1727

q-axis sub-transient inductance pu L
′′
q(1) 0.11 L

′′
q(3) 0.061

d-axis transient open-circuit time constant s T
′
d0(1) 8.6 T

′
d0(3) 3.0156

d-axis sub-transient open-circuit time constant s T
′′
d0(1) 0.08 T

′′
d0(3) 0.0767

q-axis sub-transient open-circuit time constant s T
′′
q0(1) 3.4 T

′′
q0(3) 1.2182
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5.4 EQUATION OF MOTION FOR A SYNCHRONOUS-SYNCHRONOUS ROTARY

FREQUENCY CONVERTER

The general equation of motion presents the dynamical characteristic of an electric machine and

is given by (3.40). A synchronous-synchronous rotary frequency converter contains a three-phase

synchronous motor fed by the three-phase 50 Hz public grid. The motor has a common shaft with a

single-phase synchronous generator, supplying power to the 162/3 Hz traction power grid [44].

Since the rotary converter contains two machines, mechanically connected through a shaft, the

equation of motion is rewritten for expressing the converter’s dynamical characteristic. (5.62a) and

(5.62b) are obtained for presenting each machine’s instantaneous power balance [56].

2HG

ωsG

d 2

d t 2δG +DG
d

d t
δG = pmG ,pu −pemG ,pu (5.62a)

2HM

ωsM

d 2

d t 2δM −DM
d

d t
δM = pemM ,pu −pmM ,pu (5.62b)

(5.62a) presents the power balance for the generator. Positive power flow direction is defined as out

from the generator and into the traction power grid. (5.62b) presents the power balance for the motor.

Positive power flow is direction is here defined as into the motor from the three-phase public grid.

The subscripts G and M denote generator and motor quantities, respectively. The positive direction of

power flow is also observed from the direction of torques presented in Fig. 5.11. TemM and TemG are

the electromagnetic torque of the motor and -generator, respectively. The electromagnetic power is

obtained by multiplying the electromagnetic torque with its mechanical rotor velocity.

Three-phase synch. motor Single-phase synch. generator

P=12 P=4

TemM TmM TmG TemG

Figure 5.11: A 12-poled three-phase synchronous motor mechanically coupled to a 4-poled single-phase
synchronous generator4

4Based on [32]
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The shaft is rotating the same direction for both motor and generator. The positive rotational direction

is chosen to follow the generator’s rotation. This leads to the generator- and motor rotational velocities

being defined as (5.63a) and (5.63b). The rotational deviation speed of the motor is therefore defined

as having a negative sign compared to that of the generator.

ωG ,pu ·ωsG =ωsG + d

d t
δG (5.63a)

ωM ,pu ·ωsM =ωsM − d

d t
δM (5.63b)

The per unit rotational speed of the motor equals the per unit rotational speed of the generator when

the sign convention for positive rotational direction is followed. The final equation of motion for

the motor-generator set is obtained by combining (5.62a) and (5.62b). The result is presented in

(5.64).

2(HM +HG )︸ ︷︷ ︸
HMG

d 2

d t 2δpu + (DMωsM +DGωsG )
d

d t
δpu = pemM ,pu −pemG ,pu (5.64)

A block diagram describing (5.64) is given in Fig. 5.12. s is here given as the Laplace operator. Since

both machines are modeled on a generator convention the sum of the two electromagnetic powers,

pemM and pe mG , is the generator’s electromagnetic power extracted from the motors electromagnetic

power.

pemM
pemG

+
+
-
-

1

2HMGs

ωpu

1

+pacc
dδ
dt

ωsGDG

ωsMDM

pdamp,G

pdamp,M

ωsG

-ωsM

1
s

1
s

ωG

ωM

+

Figure 5.12: A block diagram for the rotary converter’s equation of motion

Based on the equations presented above the behavior of the rotary converter is analyzed. If the rotor

rotates at speed higher than it’s synchronous speed, ωpu > 1, the rotary converter will decelerate until

it reaches its synchronous speed. This is a result of the increase of delivered power to the traction

power grid from the single-phase generator, the decrease of delivered power from the three-phase
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public grid to the three-phase motor and the motor’s- and generator’s damping that is opposing the

rotor’s deviation from synchronous speed [56].
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Chapter 6

Results and Discussion

The following chapter presents test results from three rotary converter models that have been imple-

mented using MATLAB®/Simulink.

Each rotary converter model presented in the following sections apply a three-phase synchronous

motor. Such a motor is implemented based on equations obtained in Chapter 3, and test results are

presented in Section 6.1.

The three-phase synchronous motor is connected on a common shaft to a single-phase synchronous

generator. The three different methods applied for implementing the single-phase machine model are

summarized below, and main test results are presented:

• Applying a single phase-winding and obtaining equations based on the machine’s phase quan-

tities. The equations applied for the implemented model is presented in Section 5.1. The test

results are presented in Section 6.2. The initial machine conditions cause the converter to

display undesired behavior, and the results presented are unstable.

• Applying two rotating MMF distributions for presenting the behavior of the pulsating armature

MMF distribution. Two separate three-phase synchronous machines have been implemented,

magnetically coupled to common rotor circuits. The equations applied to the implemented

model are presented in Section 5.2. The model’s test results are presented in 6.3. The model has

not presented successfully test results due to convergence issues during simulation.

• Applying a three-phase synchronous machine with one open-circuited armature phase and

adjusting the applied single-phase machine parameters. The modeling method is presented in

Section 5.3. The model’s test results are presented in 6.4 for steady-state machine performance

and during short-circuited single-phase terminals. The obtained short-circuit currents are
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compared to rotary converter models applying the same modeling technique, but alternative

parameter adjustments based on earlier sources dealing with the same modeling technique.

6.1 THREE-PHASE SYNCHRONOUS MACHINE

The three-phase synchronous machine presented below is modeled based on Park’s equations pre-

sented in Chapter 3. The parameters are based on the three-phase synchronous machine applied in

the rotary frequency converter and are presented in Appendix D.
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Figure 6.1: Three-phase terminal voltage

A stiff three-phase grid is feeding the machine, as presented in Fig. 6.1. A phase-shift is applied to

the three-phase grid voltages due to the alignment of the rotor d-axis and the armature magnetic

reference axis at 0 seconds.
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Figure 6.2: Three-phase synchronous machine power

The machine is driven by mechanical power, as presented in Fig. 6.2. A sudden change in this

mechanical power is applied after 50 seconds, and the electromagnetic power induced by the machine

is observed reacting to the changes. The electromagnetic power oscillates at 1.7 Hz and settles at a

new steady-state value after 20 seconds. The damping of power is a result of the machine’s electrical

damping due to currents induced in the rotor circuits. These currents are presented in Fig. 6.3.
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(b) d-axis damper current
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(c) q-axis damper current

Figure 6.3: Rotor currents for a three-phase synchronous machine
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A constant field voltage is applied to the field circuit, causing a DC field current to induce a constant

rotor field. The field current is observed in Fig. 6.3a. After the decrease of applied mechanical power

to the machine, the rotor circuits experience induced currents. The currents induced in the damper

bars of the rotor are here presented by a d- and q-axis current in Fig 6.3b and 6.3c, respectively.

These currents, together with the additional induced current to the field circuit, have the same

frequency as the oscillation of electromagnetic power, and they induce damping torque during the

electromechanical transient. The damper currents and the additional current to the field circuit are

damped out when the machine reaches its steady-state performance.
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Figure 6.4: Three-phase machine rotor speed

The machine’s rotor speed is observed in Fig. 6.4. After the electromechanical transient, the difference

between applied mechanical power and induced electromagnetic power causes the rotor to accelerate

and decelerate in an oscillating manner at frequency 1.7 Hz.
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6.2 ROTARY FREQUENCY CONVERTER MODEL - APPLYING SPSG MODEL 1

The rotary converter model test results presented in the following section are a result of the three-phase

synchronous machine presented in Chapter 3 and observed in Section 6.1, and a model based on the

single-phase synchronous machine equations developed in Section 5.1. The mechanical interaction

between the two synchronous machines are presented in Section 5.4.

The electromagnetic power induced by the two synchronous machines are observed in Fig. 6.5.

0 1 2 3 4 5 6 7 8 9 10

Time [s]

-20

-10

0

10

20

30

40

50

E
le

c
tr

o
m

a
g

n
e

ti
c
 P

o
w

e
r 

[p
u

]

(a) Three-phase synchronous motor
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(b) Single-phase synchronous generator

Figure 6.5: Electromagnetic power induced by the synchronous machines in the rotary frequency converter

The system is unstable, as is observed in Fig. 6.5b. The single-phase generator experiences a massive

step in power during the first milliseconds of simulation, and the large difference between induced

motor- and generator power causes the rotor to accelerate. The rotor speed is presented in Fig.
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6.6.
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Figure 6.6: Rotary converter speed

It is observed in Fig. 6.6 that the rotor accelerates to 8.4 times rated mechanical rotor speed after 37

milliseconds of simulation. The rotor then decelerates until it reaches 2.7 pu speed, and the electro-

magnetic power induced by the motor and generator reaches a repeating steady-state performance.

The electromagnetic powers, with their repetitive waveforms, are presented in Fig. 6.7 during the

steady-state machine performance.
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Figure 6.7: Electromagnetic power induced by the three-phase motor and the single-phase generator

It is observed in Fig. 6.7 that the three-phase synchronous motor’s power, TPSM, is oscillating at 184

Hz. The single-phase synchronous generator’s power, SPSG, is pulsating at 45 Hz. The rotor is, during

the presented time frame in Fig. 6.7, rotating at 2.7 times synchronous speed. If assuming that the
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rotor speed and frequency of single-phase power is dependent upon each other, the frequency at

synchronous speed, 1 pu, would be 45
2.7 = 162/3 Hz. An additional peak is observed for the single-phase

induced power between each major peak pulsation. If assuming that this peak would be located

midway between the larger pulsating peaks the induced power frequency would be 162/3 ·2 = 331/3

Hz.

The rotor circuit currents of the rotary frequency converter are presented in Fig. 6.8. TPSM and

SPSG denote the three-phase synchronous motor- and the single-phase synchronous generator rotor

currents, respectively. The frequency of the motor currents is 184 Hz, the same as the frequency for the

electromagnetic power induced by the motor. The single-phase synchronous generator rotor currents

pulsate in the same manner as the single-phase induced power, with a frequency of 45 Hz.
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(a) Field currents

9.9 9.91 9.92 9.93 9.94 9.95 9.96 9.97 9.98 9.99 10

Time [s]

-15

-10

-5

0

5

10

15

20

C
u

rr
e

n
t 

[p
u

]

TPSM

SPSG

(b) d-axis damper currents
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Figure 6.8: Rotor circuit currents for the rotary frequency converter
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The terminal currents of the three-phase motor and single-phase generator are presented in Fig. 6.9

and 6.10, respectively. The three-phase currents contain harmonics components and have a frequency

of 50 Hz. The single-phase current has a frequency of 45 Hz.
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Figure 6.9: Three-phase motor armature currents
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Figure 6.10: Single-phase generator armature current

The rotary converter voltages at three-phase and single-phase terminals are presented in Fig. 6.11 and

6.12. The three-phase voltage is applied at the three-phase motor terminals, while the single-phase

voltage is generated at the single-phase terminals by the single-phase generator.
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Figure 6.11: Three-phase motor terminal voltages
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Figure 6.12: Single-phase generator terminal voltage

6.2.1 Evaluating Model 1

Simulation results for the rotary frequency converter model when applying Model 1, developed in

Section 5.1, for the single-phase synchronous generator, is presented above. The system is unstable,

causing the converter’s rotor to accelerate significantly during the first milliseconds of simulation until

it is damped by the electrical system and decelerates to 2.7 times nominal speed. The initial accelera-

tion of the rotor is caused by initial conditions not satisfying the steady state behavior of the machine.

Several unsuccessful attempts have been carried out for calculating such initial conditions.

The three-phase synchronous machine observed in Section 6.1 presents the time-domain related

behavior of a synchronous machine during steady-state and transient electromechanical performance.
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The simulation results for the three-phase machine of the rotary converter, introduced in Section

5.1 were expected to present similar behavior. The electromagnetic motor power shown in Fig. 6.5a

should be constant during steady-state operation, not oscillating in the manner here presented. The

oscillation of the single-phase generator induced power is on the other hand expected, but at 331/3

Hz, double the nominal single-phase frequency. It is expected that if acceptable initial conditions

where to be obtained, the frequency of the single-phase power would become 331/3 Hz. This would

further on maintain a stable motor induced power, and the rotor would not accelerate during the first

milliseconds of simulation. Generated voltage and current at single-phase terminal would obtain

their nominal electrical frequency. The voltage of the single-phase generator would be expected to

resemble a sinusoidal waveform, but with an undecided third harmonic component content. The

idea behind the additional single-phase voltage third harmonic component is presented in Chapter

4.

The frequency of oscillation for motor- and generator power in Fig. 6.7 is also observed in the rotor

circuit currents presented in Fig. 6.8. This implies that the currents behave as expected, damping

power pulsations from the motor- and generator electric system.
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6.3 ROTARY FREQUENCY CONVERTER MODEL - APPLYING SPSG MODEL 2

The rotary converter model test results presented in the following section is a result of the three-phase

synchronous machine presented in Chapter 3 and observed in Section 6.1, and a model based on the

single-phase synchronous machine equations developed in Section 5.2.

The mechanical interaction between the two synchronous machines is presented by developed

equations in Section 5.4.

The electromagnetic power induced by the three-phase- and single-phase synchronous machine are

presented in Fig. 6.13a.
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Figure 6.13: Simulation results for electromagnetic power induced by the thee-phase synchronous motor and
the single-phase synchronous generator respectively
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The simulation is here carried out for 1.6 milliseconds. After this, the system is unable to converge to a

final value, and the system solution becomes unstable. Unsuccessful attempts to stabilize the system

has been carried out.
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6.4 ROTARY FREQUENCY CONVERTER APPLYING EQUIVALENT SPSG

The rotary converter model test results presented in the following section are a result of applying

physical systems in the Simscape language within the MATLAB®/Simulink environment. Two prede-

fined three-phase synchronous machines are mechanically connected through a stiff shaft. The first

machine is supplied by a three-phase stiff 50 Hz grid and applied parameters presented in Appendix

D for the three-phase synchronous motor of the rotary frequency converter. The second machine has

one open-circuited phase and a load connected between the remaining two phases. Parameters for

the single-phase synchronous machine, presented in Appendix C, are adjusted based on developed

equations obtained in Section 5.3. The parameter adjustments are shown in Tab. 5.1 as parameters for

the equivalent single-phase synchronous machine. The rotary frequency converter system modeled

are presented in Fig. 6.14.

Figure 6.14: Two three-phase synchronous machines mechanically coupled

The rotary converter has been simulated during nominal steady state loaded conditions and short-

circuited single-phase terminals. Both situations have been documented in the following sections.

6.4.1 Converter Behaviour during Loaded Conditions

The following section presents simulation results for the rotary frequency converter’s time-domain

related behavior during loaded conditions. The model configuration is observed in Fig. 6.14, with a

load resistance of 100Ω. A constant field voltage is applied to both motor and generator.
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Figure 6.15: Terminal RMS voltage for the rotary frequency converter

A 6.3 kV RMS three-phase voltage is applied to the three-phase motor terminals, and a 4.0 kV RMS

single-phase voltage is generated at the single-phase terminals. The RMS voltage levels are viewed

in Fig. 6.15. Some initial transients are observed for the generated single-phase voltage during

initialization of the simulation.
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(a) Three-phase motor
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(b) Single-phase generator

Figure 6.16: Terminal voltages for the rotary frequency converter

The instantaneous voltages of the three-phase- and single-phase terminals are presented in Fig. 6.16.

The frequency conversion from 50 Hz three-phase voltage in Fig. 6.16a to 162/3 Hz single-phase voltage

in Fig. 6.16b is observed. These frequency levels are presented for clarity in Fig. 6.17.
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Figure 6.17: Frequency at the rotary converter terminals

The electromagnetic power induced by the three-phase synchronous motor, TPSM, and the equivalent

single-phase synchronous generator, SPSG, is presented in Fig. 6.18.
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Figure 6.18: Active power at rotary converter terminals

The single-phase power in Fig. 6.18 is fed to a resistance of 100Ω. The power is pulsating at frequency

331/3 Hz, twice single-phase voltage frequency. The pulsation of single-phase synchronous generator

induced power is also observed in the field current of the generator’s field circuit, observed in Fig.

6.19.
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Figure 6.19: Field current for the single-phase synchronous generator

The field circuit is applied a constant terminal field voltage, and a DC field current induces the rotor

field of the machine. The additional 331/3 Hz oscillation observed in Fig. 6.19 is a consequence of the

pulsating power, inducing second harmonic currents in the rotor circuits. Since the machine’s steady-

state performance involves a pulsating power, the rotor circuits experience steady-state induced

second harmonic currents. This causes the damper bars of the single-phase machine to be constructed

larger than those of three-phase synchronous machines at same rated conditions. The effects of

pulsating power of single-phase machines were presented in Chapter 4.

6.4.2 Converter Behaviour during Short-Circuited Terminals

The following section presents the rotary converter’s performance during a short-circuit fault applied

to the single-phase terminals at the traction grid side of the converter. The fault is carried out during

zero terminal voltage crossing for obtaining the maximum DC-offset component to each asymmetrical

short circuit fault current. The fault situation is presented in Fig. 6.20.

Figure 6.20: Rotary frequency converter with short-circuited single-phase terminals
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Tab. 6.1 presents three different sets of parameters for the single-phase synchronous generator.

Table 6.1: Comparison of original-, old- and new obtained parameters for the single-phase synchronous
machine

Parameter Unit Original Old New

rS - Armature resistance pu 0.0018 0.000875 0.000875

xl s - Leakage inductance - pu 0.096 0.0480 0.0480

xd - d-axis synchronous inductance pu 1.02 0.3560 0.3560

x
′
d - d-axis transient inductance pu 0.12 0.0708 0.0708

x
′′
d - d-axis sub-transient inductance pu 0.1 0.052 0.052

xq - q-axis synchronous inductance pu 0.47 0.1727 0.1727

x
′′
d - q-axis sub-transient inductance pu 0.11 0.061 0.061

T
′
d0 - d-axis transient open-circuit time constant s 8.6 8.6 3.0156

T
′′
d0 - d-axis sub-transient open-circuit time constant s 0.08 0.08 0.0767

T
′′
q0q-axis sub-transient open-circuit time constant s 3.4 3.4 1.2182

The "original" parameters are obtained from [44] and presented in Appendix C. They are measured

directly based on the single-phase synchronous generator’s performance. The "old" parameters are

presenting parameter adjustments carried out in [6], where modeling single-phase synchronous

machines as three-phase synchronous machines with one open-circuited phase were studied. The

"new" parameters are presenting parameter adjustment calculations carried out in Section 5.3. The

adjusted parameters are presented in Tab. 5.1.

Fig. 6.21 present three short circuit currents for the fault situation observed in Fig. 6.20. Each fault

current belongs to a set of parameters presented in Tab. 6.1 applied to the single-phase synchronous

machine model in the rotary converter system. The resulting three short-circuit fault currents for

the "new", "old" and "original parameter sets" are presented in Fig. 6.21a, 6.21b and 6.21c, respec-

tively.
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(a) New parameters

20 22 24 26 28 30 32 34 36 38 40

Time [s]

-10

-5

0

5

10

15

20

25

30

C
u

rr
e

n
t 

[k
A

]

(b) Old parameters
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(c) Original parameters

Figure 6.21: Fault currents during short-circuited single-phase generator terminals
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The asymmetrical short-circuit currents presented in Fig. 6.21 contains AC- and DC current compo-

nents. The DC current components are obtained from the asymmetrical short-circuit currents by

locating all local maximum- and minimum values and calculating the difference between the two sets

of local extrema points.

iDC (t ) = |imax (t )|− |imi n(t )|

The DC-offset components for the three short-circuit currents observed in Fig. 6.21 are presented in

Fig. 6.22.
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Figure 6.22: Fault currents DC-offset during short-circuited single-phase generator terminals

The new and old parameters include the same steady state-, transient and sub-transient reactances

and armature resistance. The DC-offset fault current decays with the armature time constant, Ta ,

that is determined by the reactances and resistance of the armature phase-windings. The decay of

DC-offset current for the models applying "new" and "old" parameters are therefore the same, while

the model applying "old" parameters experiences a slower DC-offset decay.

The symmetrical fault currents are obtained by subtracting the DC-offset components of the short-

circuit currents presented in Fig. 6.22 from the initial asymmetrical short-circuit currents presented in

Fig. 6.21. The three symmetrical instantaneous short-circuit fault currents are presented in Fig. 6.23a.

The local maxima values of these currents are extracted from the symmetrical current and presented

in Fig. 6.23b for clarifying the peak values for each short-circuit fault current.
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(a) Instantaneous symmetrical fault currents
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(b) Peak symmetrical fault currents

Figure 6.23: Symmetrical fault currents during short-circuited single-phase generator terminals

The transient- and sub-transient open-circuit time constants are different for the "new" and "old" sets

of parameters. The decrement of current experienced during the sub-transient- and transient time

regimes are therefore different for the models applying the two sets of parameters. This is observed in

Fig. 6.23b, where the decay of symmetrical current is more rapid for the model applying the "new" set

of parameters, compared to the one using the "old" set of parameters. This is a consequence of the

"new" time constant being smaller than those presented in the "old" set of parameters.
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6.5 EVALUATION OF RESULTS FOR THREE ROTARY FREQUENCY CONVERTER

MODELS

Simulation results for three rotary converter models are presented in Section 6.2, 6.3 and 6.4, respec-

tively. Each model is applying different modeling techniques for presenting the time-domain related

behavior of the single-phase synchronous generator. A direct comparison between results from the

different converter models is not carried out due to the unstable test results obtained for Model 1 and

the unsuccessful simulation of Model 2. Model 3 of the single-phase synchronous generator is the

only model that returns rotary converter time-domain related behavior as expected.

The test results of Model 1 and Model 3 rotary converter are in the following compared. Only the

fundamental behavior of both converters are viewed, as the Model 1 test results present an unstable

steady state performance. Both converter model 1 and 3 experience a pulsating electromagnetic power

on the single-phase converter side, as presented in Fig. 6.7 and 6.18, respectively. This is expected for

the single-phase system and was presented in Chapter 4 as a pulsating single phase-winding’s MMF

distribution. It is noted that the frequency of the oscillations for Model 1 is larger than the converter’s

nominal frequency.

The rotor currents for the single-phase generators in both models present the pulsating power’s effect

on the field- and damper currents. The fact that second harmonic rotor currents are induced when a

synchronous machine experiences power pulsating at twice fundamental frequency was presented in

Chapter 4. The rotor currents oscillate at the same frequency as the induced powers in Model 1 and 3,

as observed in Fig. 6.8 and 6.19.

The behavior presented by model 3 is as expected for single-phase synchronous machines. The fault

current obtained by applying the three parameters sets presented for the short-circuit case study in

Section 6.4 are presented in Fig. 6.23. The parameter adjustments presented in Section 5.3 results in

a faster rate of decay for symmetrical fault current than the ones based on parameters obtained in

previous work.
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Chapter 7

Conclusion

7.1 SUMMARY AND CONCLUDING REMARKS

The work presented in this Master’s Thesis contributes to describing approaches for modeling the

single-phase synchronous machine for rotary frequency converters in the Norwegian traction power

system.

Three different model approaches related to instantaneous time-domain simulations of synchronous-

synchronous rotary frequency converters are suggested. In all three models, a three-phase syn-

chronous machine is applied based on the classical Park’s equation for three-phase machines.

Model 1 presents a single-phase synchronous machine described by developed sets of equations

dealing with the machine’s phase quantities. Two reference frames are applied when dealing with the

machine equations, the armature reference frame that is stationary and the rotor reference frame rotat-

ing aligned with the rotor. No attempts are made to transform the quantities related to two reference

frames to one common reference frame. Equations describing the voltage balance in armature- and ro-

tor circuits, and equations describing the machine’s magnetic coupling are developed. A consideration

when developing the machine’s magnetic coupling is the rotor angle dependent inductance ma-

trix. The dependency causes large rotor angle dependent expressions when calculating the machine

currents. Machine power is calculated based on terminal armature voltage and current.

Model 2 presents a single-phase synchronous machine described by sets of equations for two fictitious

three-phase synchronous machines. Each fictitious machine induces one resultant armature MMF

distribution, rotating at synchronous speed in counterclockwise- and clockwise direction. The two

machines are presented individually, and no magnetic coupling occurs between the two machines’

armature windings. The two sets of equations, describing voltage balance and armature magnetic
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coupling for each fictitious machine, are transformed to a common rotor reference frame. The

armature magnetic coupling equations are decreased by factors for representing each rotating MMF

distribution’s magnitude. The armature magnetic coupling equations for both fictitious machines are

combined when developing the rotor magnetic coupling of the single-phase machine. The armature

magnetic coupling of the clockwise rotating fictitious machine of model 2 will experience rotor angle

dependency. Large rotor angle dependent expressions are therefore obtained when calculating the

single-phase machine’s currents. Machine power is calculated based on the air-gap power obtained

for both fictitious machines.

Model 3 presents a single-phase synchronous machine as a three-phase synchronous machine with

one open-circuited phase. Load is connected between the remaining two phases. The single-phase

synchronous machine’s reactances and time constants are adjusted by comparing single-phase ma-

chine behavior to the behavior of the three-phase synchronous machine with one open-circuited

phase.

Test results when implementing the three rotary converter models have given varying results. Model 1

presents an unstable converter performance. The converter experiences large initial disturbances,

and are unable to obtain synchronous behavior.

Model 2 has not been successfully simulated, and the converging simulation solutions have not been

obtained.

Model 3 presents test results as expected for a rotary converter. Three-phase 50 Hz voltage is applied

at the synchronous motor terminals, and single-phase voltage at 162/3 Hz are generated at generator

terminals. Parameters obtained in Section 5.3 for the equivalent single-phase machine represents a

faster rate of decay in the sub-transient- and transient time regimes compared to parameters obtained

in previous work.

7.2 RECOMMENDATION FOR FURTHER WORK

The work presented in this Master’s Thesis has not been able to conclude in any way regarding instan-

taneous time-domain related modeling of single-phase synchronous machines. Recommendations

for further work are presented below:

• Model 1 has not been initialized correctly, and stable conditions have not been obtained. Work

regarding initializing the three-phase motor and single-phase generator is necessary for obtain-

ing synchronous operation for the converter.

• Converging simulation solutions for Model 2 have not been obtained. Work regarding the
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implementation of equations for Model 2, presented in this Master’s Thesis, should be continued

for obtaining possible simulation results.

• Rotary converter measurements should be obtained for enabling a comparison between ob-

tained results for Model 3 and real-life measurements. An analysis based on the expected current

decay during short-circuited terminals is then possible to carry out.

• Models should be obtained taking the effect of machine saturation into account. This has been

neglected for all three modeling methods implemented in this Master’s Thesis.
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Appendix A

Voltage Equations in the Rotating

Reference Frame

The set of equations for the armature voltages are presented in (A.1).


va

vb

vc

=−


RS 0 0

0 RS 0

0 0 RS




ia

ib

ic

+ d

d t


ψa

ψb

ψc

 (A.1)

The voltages, current and flux linkages are referenced to the rotor by applying the transformation

presented in (3.17).

P−1


vd

vq

v0

=−


RS 0 0

0 RS 0

0 0 RS

P−1


id

iq

i0

+ d

d t
(P−1


ψd

ψq

ψ0

) (A.2)

The equations are rewritten with an extra term due to the product derivation of d
d t (P−1ψd q0), as

presented in (A.3)

P−1


vd

vq

v0

=−


RS 0 0

0 RS 0

0 0 RS

P−1


id

iq

i0

+ d

d t
(P−1)


ψd

ψq

ψ0

+P−1 d

d t
(


ψd

ψq

ψ0

) (A.3)

(A.3) is multiplied with P and presented in (A.4).
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P P−1


vd

vq

v0

=−P


RS 0 0

0 RS 0

0 0 RS

P−1


id

iq

i0

+P
d

d t
(P−1)


ψd

ψq

ψ0

+P P−1 d

d t
(


ψd

ψq

ψ0

) (A.4)

The time derivative of the inverse Park’s matrix are presented in (A.5).

d

d t
(P−1) = d

d t
(θd )


−sin(θd ) −cos(θd ) 0

−sin(θd − 2π
3 ) −cos(θd − 2π

3 ) 0

−sin(θd − 4π
3 ) −cos(θd − 4π

3 ) 0



=ωr


−sin(θd ) −cos(θd ) 0

−sin(θd − 2π
3 ) −cos(θd − 2π

3 ) 0

−sin(θd − 4π
3 ) −cos(θd − 4π

3 ) 0


(A.5)

The resulting set of voltage equations are presented in (A.6).


vd

vq

v0

=−


Rs 0 0

0 Rs 0

0 0 Rs




id

iq

i0

+ d

d t


ψd

ψq

ψ0

+ωr


0 −1 0

1 0 0

0 0 0



ψd

ψq

ψ0

 (A.6)
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Appendix B

Flux Linkages in the Rotating Reference

Frame

The magnetic coupling of a three-phase synchronous machine are described by appreciating the

relationship between machine currents and inductances. By applying (3.10) the total magnetic

coupling of the machine can be presented as shown in (B.1).



ψa

ψb

ψc

ψ f

ψD

ψQ


=

 LS LSR

LT
SR LR

 ·



−ia

−ib

−ic

i f

iD

iQ


(B.1)

The armature flux linkages presented in (B.1),ψa ,ψb andψc , are referenced to the stationary armature

windings. The rotor flux linkages, ψ f , ψD and ψQ , are referenced to the rotor. The armature flux

linkages are transformed to rotor reference by applying Park’s matrix (3.15)
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ψa

ψb

ψc

=−


Ll s +Lss0 −LssP cos(2θd ) −Ls1s2 −LssP cos(2(θd + π

6 )) −Ls1s2 −LssP cos(2(θd + 5π
6 ))

−Ls1s2 −LssP cos(2(θd + π
6 )) Ll s +Lss0 −LssP cos(2(θd − 2π

3 )) −Ls1s2 −LssP cos(2(θd − π
2 ))

−Ls1s2 −LssP cos(2(θd + 5π
6 )) −Ls1s2 −LssP cos(2(θd − π

2 )) Ll s +Lss0 −LssP cos(2(θd − 4π
3 ))


︸ ︷︷ ︸

LS

·


ia

ib

ic



+


Ls f P cos(θd ) MsDP cos(θd ) −LsQP sin(θd )

Ls f P cos(θd − 2π
3 ) LsDP cos(θd − 2π

3 ) −LsQP sin(θd − 2π
3 )

Ms f P cos(θd − 4π
3 ) LsDP cos(θd − 4π

3 ) −LsQP sin(θd − 4π
3 )


︸ ︷︷ ︸

LSR

·


i f

iD

iQ



(B.2)

The flux linkages and current are all referenced to rotor by applying the transformation presented in

(3.17).

P−1


ψd

ψq

ψ0

=−LS P−1


id

iq

i0

+LSR


i f

iD

iQ

 (B.3)

(B.3) is further on multiplied with P , and the resulting equation is presented in (B.4).

P P−1


ψd

ψq

ψ0

=−P LS P−1


id

iq

i0

+P LSR


i f

iD

iQ

 (B.4)

The new inductance matrices are presented in (B.5) and (B.8).

P LS P−1 =−


Ll s +Lss0 +Ls1s2 + 3

2 LssP 0 0

0 Ll s +Lss0 +Ls1s2 − 3
2 LssP 0

0 0 Ll s +Lss0 −2Ls1s2

 (B.5)

The magnetizing inductances are defined as (B.6a) and (B.6b) and the rotor referenced stator induc-

tance matrix is therefore equal to (B.7).

Lmd = 3

2
(Lss0 +LssP ) (B.6a)
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Lmq = 3

2
(Lss0 −LssP ) (B.6b)


Ld 0 0

0 Lq 0

0 0 L0

=


Ll s +Lmd 0 0

0 Ll s +Lmq 0

0 0 L0

 (B.7)

P LSR =


LS f P LSDP 0

0 0 LSQP

0 0 0

 (B.8)

The rotor flux linkages are given as (B.9).


ψ f

ψD

ψQ

=−


Ls f P cos(θd ) MsDP cos(θd ) −LsQP sin(θd )

Ls f P cos(θd − 2π
3 ) LsDP cos(θd − 2π

3 ) −LsQP sin(θd − 2π
3 )

Ms f P cos(θd − 4π
3 ) LsDP cos(θd − 4π

3 ) −LsQP sin(θd − 4π
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T

︸ ︷︷ ︸
LSRT


ia

ib

ic



+


L f f L f D 0

L f D LDD 0

0 0 LQQ
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LR


i f

iD

iQ


(B.9)

The armature currents are transformed to rotor reference by applying (3.17).


ψ f

ψD

ψQ

=−LT
SR P−1


id

iq

i0

+LR


i f

iD

iQ

 (B.10)

The new inductance matrix LT
SR P−1 is presented in (B.11).


3
2 Ls f P 0 0
3
2 LsDP 0 0

0 3
2 LsQP 0

 (B.11)
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The final flux linkage transformed to rotor reference are presented in (B.12).



ψd

ψq

ψ0

ψ f

ψD

ψQ


=

P LS P−1 P LSR

LT
SR P−1 LR

 ·



id

iq

i0

i f

iD

iQ


(B.12)

The final inductance matrix is presented in (B.13), applying a common per unit base for both stator-

and rotor referenced currents.

P LS P−1 P LSR

LT
SR P−1 LR

=



Ld 0 0 Lmd Lmd 0

0 Lq 0 0 0 Lmq

0 0 L0 0 0 0

Lmd 0 0 L f f Lmd 0

Lmd 0 0 Lmd LDD 0

0 Lmq 0 0 0 LQQ


(B.13)
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Appendix C

Calculating Parameters for the

Single-Phase Synchronous Generator

Table C.1: Single-phase synchronous generator’s rated conditions [44]

Parameter Unit Value

SN - Rated power MVA 4.0

VN - Rated voltage kV 4.0

fN - Nominal frequency Hz 162/3

H - Inertia constant MWs/MVA 1.87

Table C.2: Single-phase synchronous generator’s parameters [44]

Parameter Unit Value

rS - Armature resistance pu 0.0018

xl s - Armature leakage reactance pu 0.0960

xd - d-axis synchronous reactance pu 1.0200

x
′
d - d-axis transient reactance pu 0.1200

x
′′
d - d-axis subtransient reactance pu 0.1000

xq - q-axis synchronous reactance pu 0.4700

x
′
q - q-axis transient reactance (=xq ) pu 0.4700

x
′′
q - q-axis subtransient reactance pu 0.1100

T
′
d0 - d-axis transient open-circuit time constant s 8.6000

T
′′
d0 - d-axis subtransient open-circuit time constant s 0.0800

T
′′
q0 - q-axis subtransient open-circuit time constant s 3.4000

107



APPENDIX C. CALCULATING PARAMETERS FOR THE SINGLE-PHASE SYNCHRONOUS
GENERATOR NTNU

The following calculations are based on Chapter 3, and are carried out as for a three-phase synchronous

machine.

Per unit reactances are defined as the the reactance divided by a base impedance value as presented

in (C.1).

xpu = X

Zbase
(C.1)

By appreciating that a purely inductive system contains a base impedance equal to 2π fbase Lbase and

that if fbase equals the frequency, then the per unit value of the reactance equals the per unit value of

the inductance. This is presented in (C.2) [32].

xpu = 2π f L

2π fbase Lbase
= L

Lbase
= Lpu (C.2)

The per unit reactances presented in Table C.2 are therefore equal to their respective per unit induc-

tances.

The magnetizing inductance for the d- and q-axis are

Lmd = Ld −Ll s = 1.020−0.096 = 0.924

Lmq = Lq −Ll s = 0.470−0.096 = 0.374

The constant term of the self inductance of an armature winding and the peak of the self inductance’s

second harmonic term is assumed to be

Lss0 =
Ld +Lq

2
= 1.020+0.470

2
= 0.745

LssP = Ld −Lq

2
= 1.020−0.470

2
= 0.2750

The assumption here is based on the fact that Ld > Lq . When the rotor rotates, the maximum self

inductance of the winding occurs when the rotor field is aligned with the magnetic axis of the armature

winding. The d-axis synchronous inductance is defined as the inductance for this situation. The

minimum self inductance of the winding occurs when the rotor field is 90 electrical degrees away from

the winding’s magnetic axis. The q-axis synchronous inductance is defined as the inductance for this
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situation.

The self inductance of the field winding is calculated based on (3.29)

L f f =
L2

md

Ld −L
′
d

= 0.9242

1.020−0.135
= 0.9486

The leakage inductance of the field winding is calculated by extracting the magnetizing inductance

from the winding’s self inductance

Ll f = L f f −Lmd = 0.9486−0.9240 = 0.0246

The leakage inductance of the d-axis damper winding is calculated based on (3.29)

LlD = Lmd Ll f (L
′′
d −Ll s)

Ll s(Lmd +Ll f )+Lmd Ll f −L
′′
d (Lmd +Ll f )

= 0.924 ·0.0246(0.096−0.12)

0.12(0.9240+0.0246)−0.096(0.9240+0.0246)−0.924 ·0.0246

= 0.0048

The self inductance of the d-axis damper winding equals

LDD = LlD +Lmd = 0.0048+0.924 = 0.9288

The self inductance of the q-axis damper winding is calculated based on (3.29).

LQQ =
L2

mq

Lq −L
′
q

= 0.3742

0.47−0.11
= 0.3885

The leakage inductance of the q-axis damper winding is calculated by extracting the magnetizing

inductance from the winding’s self inductance

LlQ = LQQ −Lmq = 0.3885−0.374 = 0.0145

The field winding resistance, d-axis damper winding resistance and q-axis damper winding resistance

are calculated based on (3.31).
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r f =
L f f

T
′
d0

= 0.9486

8.6000
= 0.1103

rD =
LlD + Lmd Ll f

Lmd+Ll f

T
′′
d0

= 0.0048+ 0.924·0.0246
0.924+0.0246

0.08s
= 0.3600

rQ = LQQ

T
′′
q0

= 0.3885

3.4s
= 0.1143

Table C.3: Single-phase synchronous generator’s calculated parameters

Parameter Unit Value

Lmd - d-axis magnetizing inductance pu 0.9240

Lmq - q-axis magnetizing inductance pu 0.3740

Ll f - Leakage inductance for field winding pu 0.0246

LlD - Leakage inductance for d-axis damper winding pu 0.0048

LlQ - Leakage inductance for q-axis damper winding pu 0.0145

Lss0 - Constant term of armature self inductance pu 0.7450

LssP - Amplitude of second harmonic armature self inductance pu 0.2750

L f f - Self inductance for field winding pu 0.9486

LDD - Self inductance for d-axis damper winding pu 0.9288

LQQ - Self inductance for q-axis damper winding pu 0.3885

r f - Field winding resistance pu 0.1103

rD - d-axis damper winding resistance pu 0.3600

rQ - q-axis damper winding resistance pu 0.1143
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Calculating Parameters for the

Three-Phase Synchronous Motor

Table D.1: Three-phase synchronous motor’s rated conditions [44]

Parameter Unit Value

SN - Rated power MVA 4.4

VN - Rated voltage kV 6.3

fN - Nominal frequency Hz 50

H - Inertia constant MWs/MVA 1.7

Table D.2: Three-phase synchronous motor’s parameters [44]

Parameter Unit Value

rS - Armature resistance pu 0.0033

xl s - Armature leakage reactance pu 0.1100

xd - d-axis synchronous reactance pu 0.9000

x
′
d - d-axis transient reactance pu 0.2400

x
′′
d - d-axis subtransient reactance pu 0.1650

xq - q-axis synchronous reactance pu 0.4000

x
′
q - q-axis transient reactance (=Xq ) pu 0.4000

x
′′
q - q-axis subtransient reactance pu 0.3400

T
′
d0 - d-axis transient open-circuit time constant s 4.000

T
′′
d0 - d-axis subtransient open-circuit time constant s 0.04

T
′′
q0 - q-axis subtransient open-circuit time constant s 0.1
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The following calculations are based on Chapter 3, and are carried out as for a three-phase synchronous

machine. The calculations are similar as those presented for the single-phase generator in Appendix

C.

The magnetizing inductance for the d- and q-axis are

Lmd = Ld −Ll s = 0.9000−0.1100 = 0.7900

Lmq = Lq −Ll s = 0.4000−0.1100 = 0.2900

The self inductance of the field winding is calculated based on (3.29)

L f f =
L2

md

Ld −L
′
d

= 0.79002

0.9000−0.2400
= 0.9456

The leakage inductance of the field winding is calculated by extracting the magnetizing inductance

from the winding’s self inductance

Ll f = L f f −Lmd = 0.9456−0.7900 = 0.1556

The field winding resistance is calculated based on (3.31).

r f =
L f f

T
′
d0

= 0.9456

4.0000s
= 0.2364

Table D.3: Three-phase synchronous motor’s calculated parameters

Parameter Unit Value

Lmd - d-axis magnetizing inductance pu 0.7900

Lmq - q-axis magnetizing inductance pu 0.2900

Ll f - Leakage inductance for field winding pu 0.1556

L f f - Self inductance for field winding pu 0.9456

r f - Field winding resistance pu 0.2364
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Appendix E

Model 1 - Inverse Inductance Matrix

The following calculation presents the inverse inductance matrix of the single-phase synchronous

generator when modeled applying one armature winding together with one field., one d-axis- and one

q-axis damper winding. The inverse inductance matrix is presented in (E.1).

L−1 =


−Lss Ls f LsD LsQ

−Ls f L f f L f D 0

−LsD L f D LDD 0

−LsQ 0 0 LQQ



−1

=


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 (E.1)

The inverse inductance matrix’ elements are presented in (E.2), with their common denominator

given by (E.3).

113
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a11 =−
LQQ (LDD L f f −L2

f D )

A

a12 =
LQQ (LDD Ls f −L f D LsD )

A

a13 =−LQQ (L f D Ls f −L f f LsD )

A

a14 =
LsQ (LDD L f f −L2

f D )

A

a21 =−LQQ (LDD Ls f −L f D LsD )

A
=−a12

a22 =
LDD LQQ Lss −LDD L2

sQ −LQQ L2
sD

A

a23 =−
LQQ L f D Lss −LQQ LsD Ls f −L f D L2

sQ

A

a24 =
LsQ (LDD Ls f −L f D LsD )

A

a31 =
LQQ (L f D Ls f −L f f LsD )

A
=−a13

a32 =−
LQQ L f D Lss −LQQ LsD Ls f −L f D L2

sQ

A
= a23

a33 =
LQQ L f f Lss −LQQ L2

s f −L f f L2
sQ

A

a34 =−LsQ (L f D Ls f −L f f LsD )

A

a41 =−
LsQ (LDD L f f −L2

f D )

A
=−a14

a42 =
LsQ (LDD Ls f −L f D LsD )

A
= a24

a43 =−LsQ (L f D Ls f −L f f LsD )

A
= a34

a44 =
LDD L f f Lss −LDD L2

s f −L2
f D Lss +2L f D LsD Ls f −L f f L2

sD

A

(E.2)

A = LDD LQQ L f f Lss −LDD LQQ L2
s f −LDD L f f L2

sQ −LQQ L2
f D Lss

+2LQQ L f D LsD Ls f −LQQ L f f L2
sD +L2

f D L2
sQ

(E.3)

114



Appendix F

Model 2 - Inductance Matrix

The inductance matrix Ld q presented in the flux linkage equations of (5.37) contains nine 3x3 in-

ductance matrices. These matrices are presented in the following Appendix. (F.1) and (F.2) presents

the stator and stator to rotor inductances for the counterclockwise rotating fictitious machine. (F.3)

and (F.4) presents the stator and stator to rotor inductances for the clockwise rotating fictitious

machine.

LCCW
S,d q =


Ll s +Lmd 0 0

0 Ll s +Lmq 0

0 0 LCCW
0

 (F.1)

LCCW
SR ,d q =


Lmd Lmd 0

0 0 Lmq

0 0 0

 (F.2)

LCW
S,d q =


Ll s + 3

2 (Lss0 +LssP cos(4θd )) −3
2 LssP sin(4θd ) 0

−3
2 LssP sin(4θd ) Ll s + 3

2 (Lss0 −LssP cos(4θd )) 0

0 0 Ll s

 (F.3)

LCW
SR ,d q =


Lmd cos(2θd ) −Lmd sin(2θd ) 0

−Lmd sin(2θd ) −Lmq cos(2θd )

0 0 0

 (F.4)
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Appendix G

Model 2 - Inverse Inductance Matrix

 LCCW
S,d q LCCW

SR ,d q

(LCCW
SR ,d q )T LR

−1

=



a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66


(G.1)
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APPENDIX G. MODEL 2 - INVERSE INDUCTANCE MATRIX NTNU

a11 =− 9(LDD L f f −L2
md )

LDD Ld L f f −LDD L2
md −Ld L2

md −L f f L2
md +2L3

md

a12 =0

a13 =0

a14 = 3Lmd (LDD −Lmd )

LDD Ld L f f −LDD L2
md −Ld L2

md −L f f L2
md +2L3

md

a15 =
3Lmd (L f f −Lmd )

LDD Ld L f f −LDD L2
md −Ld L2

md −L f f L2
md +2L3

md

a16 =0

a21 =0

a22 =− 9LQQ

LQQ Lq −L2
mq

a23 =0

a24 =0

a25 =0

a26 =
3Lmq

LQQ Lq −L2
mq

(G.2)
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a31 =0

a32 =0

a33 =− 9

L0

a34 =0

a35 =0

a36 =0

a41 =−a14

a42 =0

a43 =0

a44 =
LDD Ld −L2

md

LDD Ld L f f −LDD L2
md −Ld L2

md −L f f L2
md +2L3

md

a45 = Lmd (Ld −Lmd )

LDD Ld L f f −LDD L2
md −Ld L2

md −L f f L2
md +2L3

md

a46 =0

a51 =−a15

a61 =0

a62 =−a26

a63 =0

a64 =0

a65 =0

a66 =
Lq

LQQ Lq −L2
mg

(G.3)

 LCW
S,d q LCW

SR ,d q

(LCW
SR ,d q )T LR

−1

=



b11 b12 b13 b14 b15 b16

b21 b22 b23 b24 b25 b26

b31 b32 b33 b34 b35 b36

b41 b42 b43 b44 b45 b46

b51 b52 b53 b54 b55 b56

b61 b62 b63 b64 b65 b66


(G.4)
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b11 =
((72L3

md + (−36LDD −36L f f −108LssP )L2
md +108LDD L f f LssP )LQQ + ...

...
36L2

mq (LDD L f f −L2
md ))cos(2θd )2 − (36(2L3

md + (−LDD −L f f −Ld )L2
md +LDD L f f Ld ))LQQ

...4(2L3
md + (−LDD −L f f −Ld )L2

md +LDD L f f Ld )(Lq LQQ −L2
mq ))

b12 =
−27

2 sin(4θd )(2LQQ
L3

md
3 + ((−LDD

3 − L f f

3 −LssP )LQQ − L2
mq

3 )L2
md +LDD L f f (LQQ LssP + L2

mq

3 ))

2L3
md + (−LDD −L f f −Ld )L2

md +LDD L f f Ld )(Lq LQQ −L2
mq )

b13 =0

b14 = 6(LDD −Lmd ))Lmd cos(2θd )

2(2L3
md + (−LDD −L f f −Ld )L2

md +LDD L f f Ld )

b15 =
6(L f f −Lmd ))Lmd cos(2θd )

2(2L3
md + (−LDD −L f f −Ld )L2

md +LDD L f f Ld )

b16 =
−6Lmq sin(2θd )

(2Lq LQQ −2L2
mq

b21 =a12

b22 =
(−72LQQ L3

md + ((36LDD +36L f f +108LssP )LQQ +36L2
mq )L2

md − ...

...

108LDD L f f (LQQ LssP + L2
mq

3 ))cos(2θd )2 − (36((Lq )LQQ −L2
mq ))(LDD L f f −L2

md )

4(2L3
md + (−LDD −L f f −Ld )L2

md +LDD L f f Ld )(Lq LQQ −L2
mq ))

b23 =0

b24 = 6(LDD −Lmd )Lmd sin(2θd )

2(2L3
md + (−LDD −L f f −Ld )L2

md +LDD L f f Ld )

b25 =
−6(L f f −Lmd )Lmd sin(2θd )

2(2L3
md + (−LDD −L f f −Ld )L2

md +LDD L f f Ld )

b26 =
−6Lmq cos(2θd )

(2Lq LQQ −2L2
mq

(G.5)
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b31 =0

b32 =0

b33 =−9

Ll s

b34 =0

b35 =0

b36 =0

b41 =−a14

b42 =−a24

b43 =0

b44 =
(2Ld LDD −2L2

md

(−2L2
md + (2Ld L f f )LDD − (2(L f f −2∗Lmd +Ld ))L2

md

b45 = −(2Ld −2Lmd )Lmd

2(2L3
md + (−LDD −L f f −Ld )L2

md +LDD L f f Ld )

b46 =0

(G.6)

b51 =−a15

b52 =−a25

b53 =0

b54 =a45

b55 =
2L f f Ld −2L2

md

(−2L2
md +2Ld LDD )L f f −2L2

md (LDD +Ld −2Lmd )

b56 =0

b61 =−a16

b62 =−a26

b63 =0

b64 =0

b65 =0

b66 =
2Lq

2Lq LQQ −2L2
mq

(G.7)
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