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Sammendrag

Hensikten med Hell Bridge Test Arena er å evaluere ny sensorteknologi, overv̊akningsalgoritmer og kon-

struksjonsmonitoreringsteknikker p̊a en konstruksjon i kontrollerte omgivelser for å etablere p̊alitelige,

kostnadseffektive og tids-effektive inspeksjonsmetoder. Siden Hell Bridge Test Arena er et prosjekt

forventet å vare i mange år er form̊alet for denne avhandlingen avgrenset til å vurdere den globale dy-

namiske oppførselen til Hell Bridge Test Arena gjennom numerisk modellering og m̊aledata, og videre å

utforske en kjent skade i knutepunktet mellom en kryssdrager og en bærebjelke gjennom dynamisk anal-

yse i søket etter nye enkle teknikker for skadeidentifisering. Den kjente skaden vil bli inspisert gjennom

lokale m̊alinger av p̊aførte vibrasjoner og videre implementert i de numeriske modellene.

Den numeriske modellering ble gjort i Abaqus. Det ble laget to elementmodeller, en enkel bjelkemodell

og en mer detaljert skallmodel. Den globale dynamiske oppførselen ble vurdert ved å gjennomføre en

egenverdianalyse av begge modellene som videre ble sammenlignet med resultatene fra de ulike systemi-

dentifiseringsmetodene. Systemidentifiseringsmetodene som ble brukt var Peak Picking og Frequency

Domain Decomposition. De numeriske modellene ble videre brukt til å introdusere den kjente skaden i

knutepunktet mellom kryssdrageren og bærebjelken p̊a to forskjellige m̊ater. Tilslutt ble simuleringer

med p̊aførte vibrasjoner utført og sammenlignet med m̊aledata gjennom de etablerte skadeidentifiser-

ingsteknikkene.

Resultatene viser at en bjelkemodell er nøyaktig nok for form̊alet til denne avhandlingen og at skaden er

godt representert ved å la bærebjelken bevege seg fritt vertikalt og rotere fritt om den lokale transversale

bjelkeaksen. Videre viser resultatene at skadeidentifisering er mulig ved å bruke de enkle teknikkene

Moving Standard Deviation, Cross Correlation og Normalization, alle i tidsdomenet.
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Abstract

The purpose of the Hell Bridge test arena is to assess new sensor technology, monitoring algorithms

and SHM techniques on a real structure in a controlled environment to establish reliable, cost-effective

and time efficient inspection methodologies. As the Hell Bridge test arena is a project expected to last

for many years, the purpose of this paper is narrowed down to assessing the global dynamic behavior

of the Hell Bridge Test Arena using numerical modelling and full-scale measurements, and further to

investigate a known damage in the joint connection between a stringer and cross girder by dynamic

analysis in the search for new simple techniques for damage identification. The known damage was

investigated by local measurements of imposed vibrations and further implemented in the numerical

models.

The numerical modelling was performed in Abaqus. Two FE models were constructed, one simple beam

model and one more detailed shell model. The global dynamic behavior was assessed by performing an

eigenvalue analysis of the two models, which were compared to the results from the system identification

methods. The system identification methods used were Peak Picking and Frequency Domain Decom-

position. The numerical models were further used to introduce the known damage in the connection

between stringer and cross girder in two different ways. Finally, numerical simulations of imposed vi-

brations were performed and compared to the full-scale measurements through the established damage

identification techniques.

The results show that a beam model is sufficiently accurate for the purpose of this paper and that

the damage is well represented by allowing the stringer of the damaged structural component to move

free vertically and rotate free about the local transversal beam axis. Further the results show that

damage identification is possible by the use of the simple techniques Moving Standard Deviation, Cross

Correlation and Normalization, all techniques in the time domain.
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1 Introduction

The railway system is an important part of the infrastructure in todays society. In Norway we have

approximately 1000 steel railway bridges, from which most were constructed before 1960 [1]. Many of

these bridges have considerable damages that should be investigated closer, but with todays methods

and technology this requires extensive equipment, resulting in major costs and traffic downtown to

cover all inspections. As this is a global problem, not only for railway bridges, the field of structural

health monitoring (SHM) has grown rapidly throughout the last decade, but there is still big room for

improvement [2]. This has lead to the motivation of the Hell Bridge Test arena where the ultimate goal

is to assess new sensor technology, monitoring algorithms and SHM techniques on a real structure in a

controlled environment to establish reliable, cost-effective and time efficient inspection methodologies.

For the Hell Bridge test arena project, one module of the retired steel riveted Hell Bridge has been

donated to perform full-scale research on, see figure 1.1. The module has been lifted on shore and given

new fundaments. From visual exceptions, there has been observed possible serious errors in two of four

stringers at mid span. Unfortunately, the relevant structural components are located below the bridge

deck, making them hard to access. To access the state of health of these structural components, this

has lead to the motivation for investigation of new, simple, techniques for damage identification from

imposed vibrations. As the first step in a general approach to develop damage detection techniques is

to find indication of damage as a basis for determining further inspection, this is in good accordance

with the ultimate goal of the project.

Figure 1.1: Hell Bridge testarena

Since the Hell Bridge test arena is a project planned to last many years, the purpose of this paper is

narrowed down to assessing the global dynamic behavior of the Hell Bridge Test Arena using numerical

modelling and full-scale measurements, and further to investigate a known damage in the joint connection

between stringer and cross girder by dynamic analysis in the search for simple methods for damage

identification.

Two different numerical models of the module, with different levels of details, will be established in

Abaqus. The first one will be a simple beam model and the second a more detailed shell model.

Verification of the numerical models is done by comparing the results from the eigenvalue analysis to

the natural frequencies found from the system identification methods. The experimental data, in the

form of acceleration response time series, will be induced by the use of a modal hammer with the purpose

of investigating the known damages in the bridge deck. Further the observed damage in the connection
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joint between stringer and cross girder of the bridge will be implemented in the numerical models in

different ways. By modelling the damage in the numerical model, we can evaluate its impact on the

global response of the structure, and hopefully quantify the severity of them. Evaluation of the different

ways of implementing the damage in the numerical models will be done by comparison of the damage

identification techniques applied on full scale measurements and numerical simulations.

This thesis is divided into 9 chapters and 4 appendices. In the following a short presentation of each

chapter is given.

Chapter 2 gives a theoretical introduction to the theory relevant for the work done in this thesis. The

areas touched are structural dynamics, damping, modal analysis, and structural health monitoring.

Chapter 3 gives an introduction to the load carrying system of the Hell Bridge and the instrument

setups used for operational and experimental data collection.

Chapter 4 presents the natural frequencies extracted with the different system identification methods.

Chapter 5 presents the two FE models constructed with assumptions and simplifications made.

Chapter 6 presents the application and evaluation of the different damage identification techniques.

Chapter 7 gives a thorough introduction to the damaged structural component, how it’s implemented

numerically and the results of the damage identification techniques applied on numerically simulated

acceleration response. The chapter ends with a discussion of the results.

Chapter 8 presents the conclusion made by the authors, based on the work presented in previous

chapters.

Chapter 9 proposes further work.
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2 Theory

2.1 Structural dynamics

Structural dynamics are usually concerned with the vibration of structural members induced by forces

that vary with time, resulting in a time dependent response of the structure. All structures have their

own unique natural frequencies and if subjected to a load with close to, or the same, natural frequency

as one of the structures natural frequencies, resonance may occur creating large response amplitudes

relative to the static response. To consider the inherent dynamic properties of a structure, knowledge

about the different aspects of vibrations is required and is presented in the two following under sections.

2.1.1 Single degree of freedom systems

The simplest model of a vibrating mechanism is that of a single degree of freedom (SDOF) system [3].

(a) General SDOF system. (b) Free body diagram of the SDOF system.

Figure 2.1: The figure shows a SDOF system and it´s free body diagram [3].

The system in figure 2.1 consist of a mass, m, a viscous damper, c, and a linear spring, k, and is

subjected to an applied force P (t) resulting in the horizontal translation described by the single degree

of freedom, u = u(t0).

Free oscillations

If we regard the SDOF system after is has been subjected to an externally applied load but still is in

motion, i.e. monitor it’s time dependent response for P (t) = 0, the system will experience free vibration.

The forces acting on the body are then:

ft = mü Inertial force

fd = cu̇ Damping force

fs = ku Spring force

(2.1)

The equation of motion for the system can then be represented by the following second order differential

equation:

mü(t) + cu̇(t) + ku(t) = 0 (2.2)

3



The natural circular frequency [rad/s] of the system is given as:

ωn =

√
k

m
= 2πfn (2.3)

Where fn is the natural frequency in Hertz. The damped natural frequency is relevant when the system

contains damping (c 6= 0):

ωd = ωn
√

1− ξ2 (2.4)

The response will decay exponentially and approach zero with damping present. In the equation above

ξ is the damping ratio, which is the ratio between damping, c, and the critical damping ccr = 2mωn [6]:

ξ =
c

ccr
(2.5)

As shown in figure 2.2, the obtained response is highly affected by the damping ratio. For < 1, we say

that the system is underdamped and we have no oscillatory behavior. For ξ = 1, we say that the system

is critically damped, also here we have no oscillatory behavior and critical damping is what returns the

system back to its static equilibrium in the shortest time. Finally, for ξ < 1, we say that the system is

underdamped and the response becomes oscillatory.

Figure 2.2: Shows the free vibration of an underdamped, a critically damped and an overdamped system

The damping ratio ξ of a system can be determined by measurements or by an educated guess. Over the

years, many measurements have been made on a wide range of structures, so that a rational approach

would be to utilize data collected for a similar structure to the one being analyzed. For most engineering

structures where no special devices are added for damping, a damping ratio higher than 15 percent, i.e.

ξ = 0.15, is rarely observed [4, p. 454].

Forced oscillations

If we now regard the system while still under loading, i.e. P (t) 6= 0, the equation of motion becomes:

mü(t) + cu̇t+ ku(1) = P (t) (2.6)
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The frequency ratio is given by the ratio between the frequency of the applied load and the natural

frequency of the system:

β =
ω

ωn
(2.7)

In figure 2.3, the Dynamic Magnitude Factor (DMF) against the frequency ratio β for a forced SDOF

system is shown. DMF is the ratio between the dynamic response amplitude and the corresponding

static amplitude that would be obtained with a static load (ω = 0). Figure 2.3 shows that when β → 1,

i.e. when the frequency of the externally applied load approaches the systems natural frequency, large

response amplitudes occur. This phenomenon is what we call resonance, and without sufficient damping

continued forcing at the resonance frequency may lead to unstable excitation, increasing unconditionally

[6].

Figure 2.3: Shows the resonance phenomenon by a plot of Dynamic Magnification Factor versus frequency ratio
for different damping ratios.

2.1.2 Multi degree of freedom systems

Figure 2.4: Shows a schematic drawing of a multi degree of freedom system [3].

Even with considerable simplifications, real structures are rarely simple enough to be modelled as a

single degree of freedom system. This is solved by introducing the multi degree of freedom (MDOF)

system, which results in more complex motions of the system with n coupled equations of motion, n

being the number of degrees of freedom. The uncoupling of the coupled equations of motion by modal

techniques is presented later in this chapter. What the uncoupling does is provide the opportunity to
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study the system as a set of n simple oscillators, each one describing a characteristic vibration of the

system.

First the establishment of MDOF systems is presented with basis in the two degree of freedom system

shown in figure 2.4. By establishing a free body diagram for the two masses, all forces acting on them

can be accounted for:
ft1 = m1ü1

ft2 = m2ü2

}
Inertialforces

fd1 = c1u̇1

fd2 = c2(u̇2 − u̇1)

}
Dampingforces

fs1 = k1u1

fs2 = k2(u2 − u1)

}
Springforces

(2.8)

These equations can be written on matrix form:

[
m1 0

0 m2

]

[
m1 0

0 m2

]{
ü1

ü2

}
+

[
c1 + c2 −c2
−c2 c2

]{
u̇1

u̇2

}
+

[
k1 + k2 −k2
−k2 k2

]{
u1

u2

}
=

{
P1(t)

P2(t)

}
(2.9)

which can be written more compactly as:

[M][ü] + [C][u̇] + [K][u] = [P(t)] (2.10)

where [M] is the mass matrix, [C], is the damping matrix, [K] is the stiffness matrix, P(t) is the vector of

forcing functions and u is the displacement vector. With larger systems, the most common way to solve

the matrix equation in equation (2.10) is by use of the finite element method, in which a real structure

with infinitely many DOFs is discretised into a finite number of elements which are interconnected at a

limited number of nodes which have a finite number of DOFs. Next, the mass matrix, damping matrix,

stiffness matrix and force vector have to be established to get the equation of motion. At last, the time

varying response is approximated by solving the equation of motion. Several methods exist for solving

this second order differential equation, from which modal decomposition is one. Modal decomposition

is discussed below, but first, some brief theory about natural frequencies and mode shapes is presented.

2.1.3 Natural frequencies and mode shapes

The natural frequencies of a structure are the frequencies at which a system tends to oscillate in the

absence of any driving or damping force. The oscillatory mode shapes are the characteristic deformed

shapes of the structure when oscillating at the natural frequencies. An example of the first three natural

frequencies and corresponding mode shapes of a simply supported beam is shown in figure 2.5.
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Figure 2.5: Shows the first three mode shapes of a simply supported beam.

When studying the dynamic response of a structure, its modes of oscillation are extremely important

because of the previously mentioned resonance phenomenon. The different natural frequencies and mode

shapes, also referred to as eigenfrequencies and eigenmodes respectively, of a system can be found by

applying modal analysis. First, the natural frequencies of the system are calculated from the following

equation:

([K]− ω2
n[M])[Φ] = 0 (2.11)

Where [Φ] contains the eigenvectors of the system, containing its eigenmodes. As an eigenvector equal

to zero is a trivial solution and therefore not interesting, equation (2.11) is satisfied by requiring the

determinant of the dynamic stiffness matrix, ([K] − ω2
n[M]), to be equal to zero. For every degree of

freedom there will be a solution with a corresponding eigenmode. By calculating the dynamic stiffness

matrix with the obtained natural frequencies and further solving for the eigenvector, the eigenmodes

can be found. Since the dynamic stiffness matrix is singular when calculating the eigenmodes, one of the

entries in the eigenvector has to be set equal to unity to determine the other entries. The eigenmodes

therefore only show relative displacement.

2.1.4 Modal decomposition

When using modal decomposition to solve the equations of a MDOF system the mode shapes obtained

from a modal analysis are used to decouple the set of differential equations into a set of linearly indepen-

dent differential equations of SDOF oscillators [5]. This is done by presenting the displacement vector

u(t) as a linear combination of the mode shape vectors, φn. The coefficients of the linear combination

vary with time and are generalized displacement qi(t), i = 1, 2, ..., n:

u(t) = φ1q1(t) + φ2q2(t) + ..+ φnqn(t) = [Φ]q(t) (2.12)
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The modal mass, damping and stiffness matrices are obtained by inserting equation (2.12) into equation

(2.10) and pre-multiplying with the transpose of the mode shape matrix:

[Φ]T[M][Φ]{q̈}+ [Φ]T[C][Φ]{q̇}+ [Φ]t[K][Φ]{q} = [Φ]T{P(t)} (2.13)

often more compactly written as:

[M∗]{q}+ [C∗]{q̇}+ [K∗]{q} = {P∗(t)} (2.14)

Because the mode shape matrix is orthogonal with respect to both the mass and stiffness matrices of

the system, all modal matrices (matrices with the superscript * in equation (2.14))are diagonal [6]. This

yields n modal equations on the form:

q̈n + 2ξnωnq̇n(t) + ω2
nqn(t) =

P ∗n(t)

M∗n
(2.15)

Here q̈n(t), q̇n(t) and qn(t) is generalized acceleration, velocity and displacement respectively, ξn is the

damping ratio, ωn is the natural circular frequency, P ∗n(t) is the modal force and M∗n is the modal mass,

all for the nth mode of vibration. With knowledge about the external forces the modal displacements

qn(t) can be determined by solving equation (2.15) as an ordinary 2nd order differential equation. At

last, the physical displacements can be calculated by the relation in equation (2.12).

2.2 Damping

Damping is a desirable property of structures which reduces the dynamic response, i.e. brings a structure

back to its state of equilibrium after its subjected to dynamic loads. The physical causes of damping are

very complex. Shortly explained we can say that during vibration, potential energy turns into kinetic

energy, and vice versa, and part of the energy is lost by plastic material deformations and/or is changed

to other forms of energy such as acoustic and thermal energy. In this way, the energy supplied by a

dynamic load is irreversibly dissipated into the environment, and this energy dissipation is what we call

damping [7, chapter 5].

Extensive research of damping in bridges has been performed by a number of researchers, even damping

of railway bridges in particular. In Dynamics of Railway Bridges [7, chapter 5], Frýba discusses the

difference between viscous, hysteretic and Coulomb damping models, where he concludes that due to

the relatively low damping values associated with railway bridges, the practical difference between the

models is negligible. Further the author recognizes the possible applications of non-viscous damping

models in dynamic simulations of railway bridges, but as there is a need to limit the scope and extent of

this thesis and that the viscous damping model is relatively easy implemented in the finite element code,

the choice is made to only look further into viscous damping models, more specific Rayleigh damping.
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2.2.1 Viscous damping

Once again consider the equation of motion for an elastic multi degree of freedom (MDOF) system with

linear viscous damping as below:

[M]{ ü}(t) + [C]{u̇}(t) + [K]{u}(t) = 0 (2.16)

When assuming a viscous and frequency dependent damping, the most popular method to solve the

equation of motion is using modal analysis. When solving the equation of motion by modal analysis,

the equation of motion is first solved for zero damping and damping values are directly assigned to each

mode afterwards. Damping ratios can be assigned using the Caughey serie, of which Rayleigh damping

is a special case. Rayleigh damping is widely available in commercial codes and is often applied in

dynamic analysis due to its simplicity and characteristics.

Classical Rayleigh damping expresses the system damping matrix, C, as a linear combination of the

mass and stiffness matrices;

[C] = a0[M] + a1[K] (2.17)

where a0 is the mass proportional damping coefficient and a1 is the stiffness proportional damping

coefficient, both real scalars with 1/sec and sec units respectively. The damping ratio for Rayleigh

damping is given by equation (2.18) and a0 and a1 are given by equation (2.19) and (2.20).

ξn =
a0

2ωn
+
a1ωn

2
(2.18)

a0 = 2ωmωn
ωmξn − ωnξm
ω2
m − ω2

n

(2.19)

a1 = 2
ωmξm − ωnξn
ω2
m − ω2

n

(2.20)

Equation (2.18) and figure 2.6 show that for mass proportional damping, the damping ratio is inversely

proportional to the frequency while for stiffness proportional damping it is directly proportional with

the frequency. In this regard it is important to note that the dynamic response of a structure generally

includes contribution from all N modes even though only a limited number of modes are included in the

uncoupled equations of motion. Thus, only using mass proportional or stiffness proportional damping

for an MDOF system in which the frequencies of the significant modes span a wide range is not suitable

as the relative amplitude of the different modes will be seriously distorted by inappropriate damping

ratios [8]. This is why we combine the mass and stiffness proportional damping, which is called Rayleigh

Damping, after Lord Rayleigh who first suggested it.
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Figure 2.6: Shows the relationship between damping ratio and frequency for Rayleigh damping [8].

Because detailed information about the variation of damping ratio with frequency rarely is available,

the same damping ratio is normally applied to both control frequencies, i.e. ξm = ξn = ξ. For this case,

equation (2.19) and (2.20) can be simplified to equation (2.21) and (2.22) respectively.

a0 =
2ξωmωn
ωm + ωn

(2.21)

a1 =
2

ωm + ωn
(2.22)

When applying Rayleigh damping in practice it is generally recommended that ωm takes the value of

the fundamental frequency of the MDOF system, i.e. the first natural frequency, and that ωn takes

the value of one of the higher frequencies of the modes that contribute significantly to the dynamic

response [8, chapter 12]. This approach ensures that the desired damping ratio is obtained for these two

modes and that the modes with frequencies between the two specified frequencies will have somewhat

lower damping ratios. Further, all modes with frequencies lower than ωm and higher than ωn will have

damping ratios that increase when moving further away from the chosen frequencies, see the combined

curve in figure 2.6. The end result of this approach is that the response of very high frequency modes

are efficiently eliminated by their high damping ratios.

2.3 Modal analysis

In general, modal analysis is the task of estimating the modal parameters; natural frequencies, damping

and mode shapes of a structure. The modal parameters will depend on geometry, material properties

and boundary conditions, and they can be extracted by the use of operational modal analysis (OMA)

or experimental modal analysis (EMA).

The use of experimental tests to gain knowledge about the dynamic response of civil engineering struc-

tures is a well-established practice which can be dated back to the 20th century [9]. Assuming that the

dynamic behaviour of a structure can be described as a combination of modes, each one characterized

by the modal parameters mentioned above, EMA identifies those parameters from measurements of

the applied force and the vibration response. EMA has been applied in many fields such as automotive

10



engineering, aerospace engineering, industrial machinery and civil engineering. Due to the large size and

low frequency range of most civil engineering structures, applying controlled and measurable excitation

on these structures becomes a challenging and complex procedure which requires expensive and heavy

devices. This is the main reason that the community of civil engineers more recently has focused on the

opportunities provided by OMA [9].

OMA can be defined as the modal testing procedure that allows the experimental estimation of the modal

parameters of a structure from measurements of the vibration response only. Since OMA requires only

measurements of the dynamic response under operational conditions it is also known under other names

such as ambient vibration modal identification or output-only modal analysis. The idea behind OMA

is to replace the artificial excitation used in EMA by the natural and freely available excitation due

to ambient forces and operational loads, such as wind and traffic loads [9]. With OMA, we then only

need devices to measure and store the excitation history, which previously was regarded as disturbance.

This approach then becomes more economical, both in terms of structural down time and use of less

equipment.

Although OMA is very applicable for most cases, there are some drawbacks; The low amplitude of

vibrations in operational conditions requires very sensitive, low-noise sensors and a high performance

measurement chain [9]. Also, since the engineer has no control on the applied excitation, the identifica-

tion of closely spaced modes can become troublesome.

In this paper two techniques, both in the frequency domain, were implemented to extract the modal

parameters of the Hell Bridge. The chosen methods were Peak Picking (PP) and Frequency Domain

Decomposition (FDD). Before giving a theoretical introduction to these two methods, some basic theory

about mathematical tools for random data analysis has to be established.

2.3.1 Mathematical tools for random data analysis

All theory presented in this section is taken from Operational modal analysis of civil engineering struc-

tures [9].

2.3.1.1 Fourier series and Fourier transform

The Fourier transform is a fundamental tool in signal analysis because of its important properties giving

a simple relationship between time and frequency domain. The relationship provides the opportunity

to transform complex calculations into simple multiplications.

The idea behind the Fourier analysis is that any signal can be written in terms of a linear combination

of sinusoidal functions at different frequencies. This can be understood by accounting for the relation

between sinusoidal functions and complex exponentials and that both are orthogonal functions, i.e. they

fulfill the following general conditions ((2.23) and (2.24))

∫ b

a

fu(t)f∗v (t)dt = 0, u 6= v (2.23)

∫ b

a

fu(t)f∗v (t)dt 6= 0 <∞, u = v (2.24)
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Where fu and fv are complex functions and the superscript ∗ means complex conjugate. This decom-

position, originally developed for periodic functions, can be extended to nonperiodic functions, such as

random signals, by assuming that they are periodic functions with period equal to the duration T of

the signal. For a nonperiodic signal x(t) the Fourier transform (2.25) and the inverse Fourier transform

(2.26) are given by:

X(f) =

∫ +∞

−∞
x(t)e−i2πftdt (2.25)

x(t) =

∫ +∞

−∞
X(f)ei2πft (2.26)

From (2.25), by the relationship between complex exponentials and sinusoidal functions, it is shown

that any signal x(t) can be decomposed in a sum of sinusoidal functions. In practical applications, when

the signal x(t) is digitally recorded and analyzed, it is recorded with a constant sampling frequency, i.e.

the time increment between each sampling point is constant. As a consequence, only discrete time and

frequency representations are considered, and the expression of the Fourier transform has to be changed

accordingly. By assuming that the signal x(t) has been sampled at N equally spaced time instants and

that the sampling frequency has been properly selected, the Discrete Fourier Transform (DFT) can be

derived, given by:

Xk =

N−1∑
n−0

χne
−i2πkn
N k = 0, 1, 2, ..., N − 1 (2.27)

Because the evaluation of the DFT requires N2 operations, the Fast Fourier Transform (FFT) has been

developed with the goal to reduce the number of operations. Given that the number of data points

equals a power of two, the FFT reduces the number of operations to N ∗ log2N .

2.3.1.2 Spectral Density Functions

Given a pair of sample records xk(t) and yk(t) of finite duration T from a stationary random process,

their Fourier transforms are:

Xk(f, T ) =

∫ T

0

xk(t)e−i2πftdt (2.28)

Yk(f, T ) =

∫ T

0

yk(t)e−i2πftdt (2.29)

and the one-sided auto- and cross-spectral density functions, which are more commonly used than the

two sided in applications, are given by:

Gxx(f) = 2 lim
T→∞

1

T
E[|Xk(f, T |2] 0 < f < +∞ (2.30)

Gyy(f) = 2 lim
T→∞

1

T
E[|Yk(f, T )|2] 0 < f < +∞ (2.31)

Gxy(f) = 2 lim
T→∞

1

T
E[X∗k(f, T )Yk(f, T )] 0 < f < +∞ (2.32)

Where E denotes the expected value. In practical applications, Welch procedure, based on the direct

computation of the FFT of the records and the estimation of the power spectral densities (PSDs) in

agreement with (2.30)-(2.32), is a common procedure applied to obtain the PSD estimates. The Welch

procedure is computationally less demanding than other methods, but requires some operations on the

signal in order to provide quality estimates. According to (2.30)-(2.32), the one-sided auto-spectral
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density function can be estimated by dividing a record into nd contiguous segments, each of length

T = N∗∆T , applying the Fourier transform to each segment and then computing the auto-spectral

density by the following equation:

Ĝxx(f) =
2

ndN∆t

nd∑
i=1

|Xi(f)|2 (2.33)

The number of averages nd, determines the random error of the estimates and the number of data points

N in each segment determines the frequency resolution of the resulting estimates. N is often referred to

as the block size for the computation of each FFT. By dividing the record into nd contiguous segments,

the estimates are now based on records if finite length which introduces error. To eliminate these errors,

specific strategies are required.

Without going into details, the procedure of dividing the record into nd segments allows the energy at

a certain frequency to spread to nearby frequencies, causing large amplitude errors. This phenomenon

is known as leakage and the effects of it may introduce significant distortions in the estimated spectra,

in particular in the presence of data characterized by narrow bandwidth. However, leakage effects do

not occur when the analyzed data is periodic with a period equal to the record length and this is

used to produce a correct spectrum. Thus, in order to suppress the leakage problem, data are made

periodic by tapering them by an appropriate time window, leading to the elimination of discontinuities

at the beginning and end of the analyzed record. The most common choice of window is known as the

Hanning window. The Hanning window minimizes the leakage effects, but the use of it to compute the

PSD estimates implies a loss factor of 3/8, introducing the need for a rescaling to achieve the correct

magnitude.

Another drawback of the application of the Hanning window is that the half power bandwidth increases,

which may affect the damping estimates. The increase in half power bandwidth is avoided by increasing

the length of each segment until each FFT provides the same bandwidth with tapering that would

have occurred without it. For a given number of averages nd, the increase in the length of the tapered

segments implies an increase in the total record length. If the data is limited, an increase in the length

of the tapered segments is possible at the expense of the number of averages nd, but this introduces an

increased variability in the PSD estimates. This problem can once again be solved by dividing the total

record into partially overlapping segments.

2.3.2 Frequency domain techniques

In the following couple of sections, two possible methods for modal parameter identification in the

frequency domain are presented.

2.3.2.1 Peak picking

The Peak picking method, also known as the Basic Frequency Domain (BFD) technique, is a very

popular method for identifying the modal parameters of civil engineering structures subjected to ambient

vibration loading, reason being its implementation simplicity and processing speed [10].

The method is based on the fact that the frequency response function (FRF) goes through extreme

values around the structures natural frequencies. This results in distinct peaks in the FRF and the
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values at where these peaks occur is a good estimate for the natural frequencies of the system. In the

output only-case, the input-force dependent FRF can’t be determined, as we don’t know the input, and

is simply replaced by the power spectral density function. From the plots of the power spectral density

estimates the natural frequencies are determined by manually picking the peaks.

When estimating the mode shapes, we use a single mode approximation close to the natural frequency,

meaning that we assume that the dynamic response at resonance is only dominated by one mode. If

we have modes with close natural frequencies this will be a bad assumption and probably yield poor

results for the mode shapes [10]. Choosing one of the accelerometer locations as reference point, ϕ(x1) in

equation (2.34), the modal value at any given point compared to the modal value of the reference point

can be identified by the relationship in equation (2.34). The sign of the modal value at a given point

is determined by the sign of equation (2.35), where Gr1ri cross spectral density between the reference

point ant the point we are looking at, r1.

Griri(ωk)

Gr1r1(ωk)
=
ϕ(xi)2

ϕ(x1)2
(2.34)

Re(Gr1ri(ωk) (2.35)

As the modal amplitude of reference appears in the denominator, it should not be zero. This is done by

avoiding the location of the reference point close to a node of a mode that is important to identify [11].

In principle, the PP method should only be applied to evaluate the natural frequencies and mode shapes

of a structure. The half-power bandwidth method is sometimes applied to get damping estimates from

the spectra, but a number of studies have shown that the accuracy of this method is poor [10][].

Although peak picking is a popular choice for identifying modal parameters there are some relevant

theoretical drawbacks for this method:

• Picking the peaks is a subjective task, meaning that the results obtained from the same data may

depend on the experience of the user, especially if the peaks are not distinct [10].

• We don’t obtain real mode shapes but operational deflection shapes. For cases with low damping

and well separated peaks this is no major drawback, as the operational deflection shapes are very

similar to the actual mode shapes for these cases [10][9].

2.3.2.2 Frequency domain decomposition

The frequency domain decomposition (FDD) method is an extension of the peak picking method. The

goal with the method is to overcome the limitations of the PP method related to separating closely

spaced modes and providing reliable damping estimates (the latter not relevant for this paper) [9].

The first step of the FDD method is constructing the spectrum matrix of each set up, with the number

of lines equal to the number of measurement points in each set up and with as many columns as the

number of reference points chosen. Each column in the PSD matrix contains the cross spectra between

the structural response at all the measured points and the corresponding response of the reference point

[11]. It can be shown that under the assumption of white noise excitation, low damping and orthogonal

mode shapes for close modes, the singular value of the spectrum matrix, in the vicinity of each resonant

frequency, are auto spectral density functions of a single degree of freedom (SDOF) system with the

same frequency and damping as the different structure vibration modes. Therefore, the spectral matrix
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(Gyy) is decomposed, at each frequency (ωi), in singular values and vectors using the singular value

decomposition (SVD) algorithm, described in equation (2.36).

Gyy(ω) = VSVH (2.36)

Here, S is the singular value diagonal matrix, V is the orthogonal matrix of the singular vectors and

(•)H refers to the transpose conjugate. The singular vectors, meaning the columns in V, are orthogonal

to each other [12].

A way of understanding the response signals u(t) is from their decomposition into participations from

the different modes Φi expressed via the modal coordinate q(t) (presented in section 2.1.4). Using

equation (2.36) in the expression of the correlation matrix, Cyy(τ), of the response we get:

Cyy(τ) = ΦCqq(τ)ΦH (2.37)

And further applying the Fourier transform in equation (2.37) gives:

Gyy(ω) = ΦGqq(ω)ΦH (2.38)

Where Gqq(ω) is the spectrum matrix of the modal coordinates. We observe that equation (2.36)

and equation (2.38) have the same form and it can be understood that the singular vectors present

estimations of the mode shapes and the corresponding singular values present the response of each of

the modes expressed by the spectrum of each modal coordinate. The assumptions are that Gqq(ω) is a

diagonal matrix, meaning that the modal coordinates are uncorrelated, and that the mode shapes, the

columns in Φ, are orthogonal [12].

2.4 Structural Health Monitoring

Structural Health Monitoring (SHM) is the process of accessing the state of health of a structure and

predicting its remaining life time [2]. To successfully develop and implement SHM, a good understanding

of diverse disciplines such as sensor technology, material technology, modeling aspects and computing

technology is necessary. In this paper the focus is on computational techniques that support the SHM

process, but a thorough understanding of the whole process is still needed in order to achieve good

results.

The general motivation for SHM is that all man-made structures have finite life spans and the degrading

process starts as soon as they are put into service. Processes such ass corrosion, fatigue, erosion, wear

and overloads degrade these structures until they are no longer fit for their intended use. Depending on

a structures value, cost of repair and consequence of failure, a number of actions can be taken;

• Wait until failure and dispose the structure

• Wait until failure and repair the structure

• Examine it periodically and determine whether or not maintenance is needed

Bridges and other structures where the consequences of failure are critical, with human lives at risk, fall

into the latter category. All structures that fall under this category have regular inspections performed by
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skilled engineers to assess the health of the structures and systems [2]. These inspections are expensive,

faults are normally not found, but still, in lack of better ways to do them, they are very important.

Unfortunately, they are also subject to human error, meaning that some unnecessary maintenance is

performed and some faults are not discovered.

SHM has the objective of providing the tools for constant or periodic monitoring of critical structural

components, in order to determine the need for remedial action and to prevent catastrophic failures.

SHM potentially offers increased safety, since faults are addressed before they reach critical levels,

avoids human error and reduces ownership costs by both removing expensive manual inspections and

performing maintenance when its needed, instead of pre-planned precautionary maintenance. Because

of the potential benefits of implementing SHM are huge, a great amount of research is in progress

worldwide into developing and improving SHM methods [2].

Benefits of SHM include:

• Optimal use of the structure by minimizing downtime and avoiding catastrophic failure

• Replaces periodic and scheduled maintenance inspection with performance-based (or condition-

based) maintenance or at least reduces the present maintenance labor

• Improves safety and reliability

A SHM system consists of both hardware and software elements. For this paper, the hardware elements

are the sensors (accelerometers) and the associated instrumentation, while the software components

consist of the damage modelling (in FE models) and damage detection procedures. We can broadly

divide SHM into five levels:

• Confirming the presence of damage

• Determination of location and orientation of the damage

• Evaluation of the severity of the damage

• Possibility of controlling or delaying the growth of damage

• Determining the remaining life in the structure

SHM can be performed in a short-term or long-term perspective, depending on the application. Short-

term SHM is damage detection based on information obtained from the structure through inspection,

i.e. not removing manual labor. Long-term SHM obtains information from the structure, normally in

service, over a long period of time, typically months or years. For this paper, short-term SHM is applied,

so the determination of location is done manually by visual inspection and possible ways to confirm the

presence of damage is further investigated. The remaining three levels of SHM are not in the scope of

this paper.

2.4.1 Damage identification

The first step in a general approach to find new inspection methods for damage detection is to find indi-

cation of damage as a basis for determining further inspection. The basic principle of damage detection

algorithms is that the structural characteristics parameters are functions of the physical properties of a

structural system, consisting of mass, damping and stiffness. Hence, damage in those physical properties
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will cause change in the structural characteristics parameters. In other words, damage will somehow

change the stiffness, mass and energy dissipation of the structure, which in turn will change the global

dynamic properties.

For this study, it is believed that this change of stiffness can be reflected by analyzing time series

obtained from imposed vibrations. In the following sections some brief theory about the four analysis

techniques investigated in this paper is presented. The theory presented is thoroughly covered in a great

number of books and articles, but a general reference is made to the books Random vibrations: Theory

and practice [13], Operational modal analysis of civil engineering structures [9] and Modal analysis [14].

2.4.1.1 Time domain

2.4.1.1.1 Moving standard deviation

Moving standard deviation provides å measure of dispersion, in other words; a quantification of the

variation in a given data set. In the case of considering a data set of acceleration history, a, made up of

N scalar observations, the standard deviation is defined as:

σ =

√√√√ 1

N − 1

n∑
i=1

|ai − µ|2 (2.39)

Where µ is defined as the mean of a:

µ =
1

N

∑
i = 1Nai (2.40)

In the analysis performed, the unbiased normalization factor N − 1 is used instead of N for the sample

standard deviation. For the results presented in this paper, the choice of window length was set to 21

data points, i.e. the standard deviation values for each point calculated include 21 elements. This choice

is discussed and accounted for in section 6.1.1.

2.4.1.1.2 Cross correlation

In signal processing, cross correlation is a measure of similarity between two waveforms as a function

of a delay (time-lag) applied to one of them. Consider two sampled waveforms x(i) and y(i), where

i = 0, 1, 2. . . N − 1. The cross correlation, r, for all delays d = 0, 1, 2. . . N − 1 is defined as:

r(d) =

∑
i[(x(i)− µx)(y(i− d)− µy)]√∑

i(x(i)− µx)2
√∑

i(y(i− d)− µy)2
(2.41)

Where µx and µy are the mean values of the x and y waveforms, as defined in equation (2.40). In this

study, the cross correlation is used to measure the similarity of two stationary acceleration response

time series, A1(t) and A2(t). The cross correlation function can then be defined as:

RA1A2(τ) = E[A1(t)A2(t+ τ)] (2.42)

Where E[A1(t)A2(t+τ)] is the expected value of the cross correlation function between the acceleration

response time series A1 and A2 for varying time lag, τ = t2 − t1.

17



2.4.1.1.3 Normalization

Normalizing sampled waveforms provides a simple method to compare trends in waveforms of varying

amplitude. In this study, the sampled waveforms are in the form of acceleration response time series,

A, and the normalization is performed by the following equation:

Anorm =
A

|max(A)|+ |min(A)
(2.43)

Where Anorm is the normalized acceleration record, |max(A)| finds the absolute value of highest value

in the acceleration response time series and |min(A)| finds the absolute value of the lowest value in the

acceleration response time series.

2.4.1.2 Frequency domain

2.4.1.2.1 Frequency response function

In experimental modal analysis, frequency response function (FRF) is a frequency based measurement

function used to identify the modal parameters of a physical structure. Equation (2.44) defines the FRF

for a single-input, single-output (SISO) case where X, or X(ω), represents the response of the system

and F , or F (ω), represents the external load.

HXF =
GXF (ω)

GF (ω)
(2.44)

Here, GXF is the cross spectral density between the output response and the input force, GF is the auto

spectral density of the input force and HXF is the FRF of the response caused by the force. It should

be noted that the theory presented here is given in terms of angular frequency ω (rad/s), whereas the

results presented in section 6.2.1 and 7.5.1.2.1 are given in terms of frequency f (Hz).
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3 Hell Bridge

The original Hell Bridge, figure 3.1, was a steel riveted railway bridge in Trondheim, Norway, crossing

Stjoerdal river. It was built over a span of four years, finished in 1902, as a part of Troenderbanen

between Trondheim and Steinskjer on Nordlandsbanen. Its service life time as a part of the Norwegian

railway system lasted for 114 years, but was replaced by the new Hell Bridge when it was finished in

2016. Parts of the original Hell Bridge will continue to serve for many years to come, now as a full scale

dynamic project. The project is named Hell Bridge Test Arena and is a project expected to last for

about 10 years. The end of its total service life time will be marked when it in the end is loaded to

complete failure.

Figure 3.1: Hell Bridge when still in normal service.

The bridge was an open deck pony Parker truss bridge with five identical spans, or modules, of 35 meters

and width of 4.5 meters. Each span can, if simplified, be looked at as a separate statically determined

structure as the only thing connecting the different spans originally were the tracks and the expansion

joints. The exact design of the bridge was unique, but it shares many structural details with other

bridges in both Norway and Europe. In fact, the majority of the 1000 railway bridges constructed in

Norway before 1960 have/had similar open deck riveted details as the Hell Railway Bridge [1].

3.1 Load carrying system

The load carrying system of the bridge can be divided into a primary and secondary system, see figure

3.2. The primary system consists of two identical planar trusses designed to carry the vertical loads,

connected by a lower truss designed to take the horizontal forces, see figure 3.2 (a). The secondary

system consist of 30 cross girders of two different lengths and 40 continuous longitudinal girders of equal

length, see figure 3.2 (b). Being an open deck riveted bridge, the bridge does not have an upper truss
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connecting the top part of the planar trusses, making up the side walls. Instead all vertical beams,

except from the four on the ends of the bridge, have stiffeners going out of the plane of the planar

trusses, see figure 3.3. These stiffeners increase the in and out of plane bending stiffness of the planar

trusses severely, but how they work will not be discussed further as this is beyond the scope of this

paper.

(a) Primary system.

(b) Secondary system.

Figure 3.2: Load carrying system.

Figure 3.3: Structural detail of stiffener.

Originally, when the bridge was still in service, there were railway tracks resting on top of the wooden

sleepers. The loading from the train passages was thereby transferred from the railway tracks to the

wooden sleepers, and onto the longitudinal girders. From the longitudinal girders the forces were

transferred to the horizontal connector girders and out to the vertical hangers. Through the vertical

hangers, the forces were distributed throughout the truss and into the fundaments at every module´s

ends. The effect of increased mass and stiffness from the railway tracks, which were permanently removed

when the module was moved to the test arena, will be discussed in chapter 4.

20



3.2 Damage

In similarity with many other bridges, the Hell Bridge has an open deck construction where the bridge

girder consists of stringers and cross girders. From the load distribution process presented in the previous

section, it is shown that the longitudinal girders, also referred to as stringers, are a critical part in the

load distribution process, and therefore a proper connection between stringers and cross girders is very

important.

In the secondary load carrying system of the Hell Bridge, the connections between stringers and cross

girders consist of angle bars. For the stringers subjected to further investigation, one of the joint

connections is severely damaged and significant vertical movement is experienced when the stringer is

subjected to load. In the continuation of this thesis, the stringer including its joint connection is referred

to as the damaged structural component, whereas the other stringers including their joint connections are

referred to as undamaged structural components. A thorough introduction to the damage is presented

in chapter 7.

3.3 Monitoring system

For this project, both operational and experimental data is available. Whereas the operational data

is only used to extract the natural frequencies and mode shapes of the system, the experimental data

is also used for damage identification, which was its main purpose. All collected data is in the form

of acceleration response time series. The operational data is collected from when the bridge was still

in service, with no knowledge of input forces. The experimental data was produced with the use of

a modal hammer on the Hell Bridge Test Arena, providing information about both input forces and

output acceleration. For each case, a different monitoring system was set up, represented in the two

following sections.

3.3.1 Operational data

During the measurement period in 2016, a total of 20 accelerometers were mounted on the bridge. The

location of all accelerometers are shown in figure 3.4 and all discussions about accelerometers in this

section are referred to this figure.
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Figure 3.4: Overview of accelereometer locations

There are in total four different data files with sampling frequency 400 Hz and a duration varying

between 1.5 and 2 hours, giving plenty of data to work with. The two first data files are from 9th of July

2016, a cloudy day with strong gusted winds. Work was also being conducted by the entrepreneur on

the south side of the bridge, where a large mobile crane and two diggers were working on the expansion

joint for the new bridge. The two last data files are from 9th of August 2016, a silent sunny day with

no work around the bridge and almost no wind.

Before starting to process the acceleration response time series to extract the modal parameters of the

bridge, the acceleration vs time was plotted for all three directions, x, y and z, for every accelerometer.

This gave a total of 60 plots per data file, and was done to check if all plots looked reasonable and assure

that the connection between the accelerometers and the channels were ok.

The top left part of figure 3.5 shows a good example of how such a plot might look like, with the

four distinct peaks each represent a train passage. At first glance it might look like there is not much

information in the record between train passages, but as displayed in the top right plot of figure 3.5,

where we only plot the acceleration record up to the first train passage, this is not the case. As expected

the amplitude of the acceleration is much lower for wind loads than train loads.
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Figure 3.5: Acceleration plot in transversal direction for accelerometer A05 and A13

From plotting the acceleration history, it was found that there was no, or a bad, connection between the

accelerometer and the channel for multiple channels, giving what we call a dead channel. For example,

the plot for accelerometer A13, which should give somewhat the same information as accelerometer A05,

looked like the one displayed in the bottom left of figure 3.5. One can clearly observe that there is only

one peak, when there should be four, and for the rest of the time series there is some periodic noise,

indicating a dead channel, see bottom right of figure 3.5.

Twenty accelerometers and almost 8 hours of data is a lot of information to process, but to give a good

estimation of the different mode shapes, a high number of accelerometers is needed to be able to catch

how the bridge moves, especially as the mode number increases. Preferably, all accelerometers would

therefore be used to extract the modal characteristics of the bridge. Unfortunately, all 3 channels in

both accelerometer A13 and A14 were dead for all data files. There were also some dead channels for

accelerometer A11-A12 and A14-A19. For simplicity and reduction of possible error using channels that

don’t represent how the actual bridge behaved, only accelerometer A00-A10 were used to extract the

modal parameters of the bridge. This leaves us with 11 accelerometers, only representing one side of

the bridge, but this should still be enough to extract the natural frequencies and obtain mode shapes

estimates without limiting the results.
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3.3.2 Experimental data

The main objective with this test procedure is to use a modal hammer and a set of accelerometers to

identify damage by performing measurements on the damaged and undamaged structural components.

This is performed by determining the modal characteristics for relevant components in the bridge girder.

The testing was performed using the rover hammer configuration method. This involves using several

accelerometers that are located at fixed locations, see figure 3.6. Hits with the hammer were performed

at different specified impact locations, also displayed in figure 3.6 [15].

Figure 3.6: Overview over location of accelerometers, impact locations and location of damage [15].

All hits were performed directly on the beam, adjacent to the closest accelerometer. Accelerometer A05

and A02 were placed according to the global coordinate system, shown in the bottom left of figure 3.6,

with the z-axis pointing out of the plane, towards the reader. The remaining four accelerometers were

placed upside down on the bottom flange of the stringers due to restricted accessibility. Hence, for these

accelerometers the following yields:

• XLOCAL = XGLOBAL

• YLOCAL = −YGLOBAL

• ZLOCAL = −ZGLOBAL

Three hits per location were performed, resulting in a total of 30 hits. Length per acceleration record is

minimum 30 seconds, i.e. five seconds before the impact and 25 seconds after the impact. The length of

the measured signal should be long enough to allow it to decay. The hardest hammer tip, the red tip,

was used because it should result in the best possible impulse shape. Double-hits shall be avoided, i.e.

the hammer tip shall not touch the impacted area twice. The data was collected at a sampling rate of

2048 Hz.

The damaged location subjected to further investigation is marked with a read line adjacent to impact

location X9, see figure 3.6. Figure 3.6 also clearly displays the symmetric set up that is used. This

is done so that we can compare results from the damaged structural component to results from the

undamaged structural components as we would expect them to behave similarly if there was no damage

present.

A quick check of the collected experimental data was also done by plotting the force vs time for the

hammer sensor and acceleration vs time for all accelerometers and impact locations. The plots showed

that nearly all hits exceeded the sensitivity of the sensor on the hammer tip. FRF’s can therefore not be
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computed for these data sets as the full input is not known and PSD estimates have to be used instead.

To see how this would effect the results, FRF and PSD estimates for the same acceleration output

were plotted and compared. The results are shown in figure 3.7 where the FRF and PSD estimates for

accelerometer A01 and A03 are compared for impact location X3.

Figure 3.7: Comparison of FRF and PSD estimates for accelerometer A01 and A03, impact location X3

The observation is made that the curves in each respective plot look very similar for an impulse input.

The only clear difference is the scaling of the magnitude of the different peaks, but the curves provide

the same information. It is therefore concluded that for the case where the input force is in the form

of an impulse, there is no practical difference between the FRF and PSD estimates. The fact that we

don’t have knowledge about the full input is therefore no significant drawback and the results presented

in the following chapters are presented as if both input and output is known.

It was also found that many of the acceleration records where the impact location was directly adjacent

to the sensor, exceeded the sensitivity of the sensor. All records were the sensitivity of the sensor was

exceeded were not used in the methods described in chapter 6.
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4 System identification

This chapter presents the application of the different system identification methods used in this paper.

The implementation of both frequency domain methods, PP and FDD, were performed by the use of

Matlab. The PP method was simply implemented by using the built in function pwelch [16]. What this

function does is give Welch’s power spectral density estimate based on the inputs; acceleration response

times series, sampling frequency, length of segments, number of overlap samples and number of discrete

Fourier transform (DFT) points to use in the PSD estimate. The input acceleration and the sampling

frequency have to be given, but the remaining three parameters can be left blank as there are built in

default values, see Matlab Documentation for more information [16]. Changing these three parameters

may help to smoothen out the plot and make the peak picking process easier. Unless stated otherwise,

the default values were used.

The FDD method was implemented by using the FDD-script available on mathworks, constructed

by Mohamma Farshchin [17]. This script takes acceleration records from an excel-file and sampling

frequency as input, and returns a plot of the first singular values of the PSD matrix. The excel-file

has one column per accelerometer and as many rows as sampling points. The number of columns in

the PSD matrix will be the same as in the input excel-file. From the returned plot of the first singular

values the peaks have to be picked manually. When the peaks are picked, the script returns the value

at where each peak occurs, representing the natural frequencies, and their respective mode shapes. The

scripts used for PP and FDD can both be found in Appendix B.

4.1 Operational modal analysis

The PP method was implemented first, so the discussion below is based on results from this method.

When processing the operational data, the whole 1.5-2-hour long acceleration files were originally used

as input, but this provided inconsistent results for the PSD plots. This made the task of picking the

peaks hard, so to obtain better and more consistent results, three new approaches were made to the

operational acceleration data used as input in the Matlab script:

• Take out acceleration data a few seconds before the train passes over the bridge and end it a

few seconds after the acceleration plot is back to “normal”. “Normal” being the acceleration the

bridge experiences from wind loads, typically well below 2 m/s2 in this paper.

• Take out the acceleration data between train passages, giving the bridge response from nature

loads.

• Take out the acceleration data when the train has passed the bridge, but the bridge is still expe-

riencing considerable acceleration, well above “normal”.

The goal of the two first approaches was to see if there was any difference in the natural frequencies

extracted from when the bridge was subjected to train loads vs wind loads. If so, this would possibly

explain why the results were inconsistent. Both approaches gave much smoother plots, but only the

second approach, where the acceleration was mainly induced by wind, gave more consistent results. It

was found that the natural frequency estimates from when the bridge was only subjected to wind loads
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were somewhat higher than the ones estimated from when the bridge was also subjected to train loads.

The reason for this explained by the fact that when the train is on the bridge it becomes a part of the

structure giving mainly additional mass, but probably also some additional stiffness. From the simple

formula shown in equation (4.1) it’s easy to see that with a big increase in mass and a small increase in

stiffness, the natural frequencies of the system will be lowered.

ω =

√
K

m
(4.1)

This observation explains why using the whole 1.5-2-hour acceleration records as input provided incon-

sistent results; the results depend on the train passing the bridge. This also explains why the results

obtained from using train load induced acceleration as input were inconsistent, while results from using

wind load induced acceleration as input were consistent.

From the discussion above it’s natural to draw the conclusion that only using the wind load induced

acceleration would be best. This is true in terms of consistency of the results, but the problem is that

wind loads are normally very low frequent. For a fairly short and stiff bridge, such as the Hell Bridge,

wind loads will therefore excite the first couple of modes so much stronger that it’s hard to localize higher

frequencies from the PSD plots. Results showed that it was possible to localize peaks up to about 15-20

Hz from the PSD plots when using the wind induced acceleration only, while the PSD plots from the

train induced acceleration presented peaks in the whole range up to 200 Hz. By the Nyquist-Shannon

sampling theorem, 200 Hz is the highest possible frequency to detect when a sampling rate of 400 Hz is

used [18].

This gave the motivation for the third approach described, where the goal was to use the bridge response

from train loads, without the additional mass and stiffness from when the train was on top of it. The

results obtained from this approach seemed to correlate better with the natural frequencies found from

only wind loads, and higher modes were also excited. The problem was that as we had no information

about the speed and length of the different trains passing the bridge, it was a troublesome procedure to

find exactly when the train had passed the bridge and the choice was made to not go further with this

approach.

For the PP method, a combination of the two first approaches was used. The second approach to extract

the lower natural frequencies of the bridge with greater precision and the first approach to extract the

natural frequencies of modes that were not excited as well by wind loads, well aware that these results are

somewhat altered, depending on the train passing. Figure 4.1 shows an example of the PSD estimates

for accelerometer A05, located at the center of the bridge, for both transversal and vertical direction

based of acceleration data from between train passages.

28



Figure 4.1: Shows plots of the PSD estimates for accelerometer A05 in both transversal and vertical direction
based of acceleration from between train passages.

For the FDD method on the other hand, where the peaks were picked based on a plot from the first

singular value of the PSD matrix, only the wind induced acceleration records were used. This choice was

made because the information provided from this approach was sufficient to localize the first 14 modes.

While the modal estimates from PP were fair, at least for the 10 first modes, the modal estimates from

FDD were excellent for all 14 identified modes, presented in table 4.1 (see next section). An example of

the first singular values of the PSD matrix plotted, and the mode shapes estimated for the chosen peaks

is shown in figure 4.2 and 4.3 respectively. The singular values and their corresponding singular vectors

are ordered in singular value descending order, meaning that the first singular value will be the largest.

By applying peak picking to the first singular values, 6 significant modes from which three pure vertical

bending modes, see green dots in figure 4.2, were identified in the frequency range 0-25 Hz. The plot

is based of input vertical acceleration in the girder, therefore only representing modes with significant

vertical motion in the girder.
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Figure 4.2: 1st singular value of PSD matrix plotted, three first vertical bending modes picked (green dots).

Figure 4.3: Mode shape estimates for the three first vertical bending modes using FDD.

The plots in figure 4.3 are based of 7 points, therefore not very smooth, but what modes the different

peaks represent becomes very clear. The displacement is known to be zero at both ends, while number

1-5 on the x-axis represent the location of accelerometer A01, A03, A05, A07 and A09 respectively (see

figure 3.4, section 3.3.2 for accelerometer locations).
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4.2 Experimental modal analysis

As shown in section 3.3.2, only 6 accelerometers, placed in the girder, were used for the experimental

data, while 20 accelerometers, placed in both side walls and girders, were used for the operational data.

Because of the high number of evenly distributed, and symmetric, accelerometers throughout the bridge

for the operational data, this data gives more information than the experimental data. Not only does

it give us information about both the girder and the side walls, but it also gives us the opportunity to

derive good mode shape estimates. With good mode shape estimates it becomes apparent what peaks,

representing natural frequencies, from PP and FDD that match the modes found in the FEA.

Although system identification was already performed using the operational data, PP was also performed

on the experimental data. This was done because the experimental data was collected from the bridge

after it was moved to its new fundaments, as it stands today. The numerical models are based on the

bridge after it was moved to its new fundaments, i.e. with one span and no rails. As the accelerometer

set up for the experimental data only covers about 40% of the bridges length, it’s impossible to derive

good mode shape estimates, but with the operational modal analysis already performed, there is little

to no doubt of which mode shape the different peaks represent.

The results displayed in table 4.1 show that the effect of removing the rails is significant. Comparison

of results from PP on operational data vs PP on experimental data clearly shows that the rails lower

the natural frequencies of the bridge. From equation (4.1) in section 4.1, this indicates that that mass

contribution from the rails is bigger than the stiffness contribution. Table 4.1 also shows that the results

obtained with PP and FDD for the operational data are very similar, as one would expect, and that

one mode not found with PP is found with FDD. Only the modes with significant motion in the girder

are found for PP with the experimental data as input.

Table 4.1: Shows results for PP applied on both operational and experimental data, and FDD on operational
data. Frequencies are given in Hertz [Hz].

As Both FE models presented in chapter 5 were constructed with the goal to replicate the dynamic

behavior of the Hell Bridge Test Arena in the best way possible, the models are updated to fit the natural

frequencies estimated from the experimental data for all modes that can be found with the monitoring

set up. Four out of the 14 modes presented in table 4.1 have little to no movement in the girder. Hence,
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natural frequency estimates for these four modes can’t be found from the experimental data, so the

natural frequencies estimated from the operational data are therefore used for these modes when finding

the best fitting for the FE models. The main difference between the bridge when the operational data

was collected vs when the experimental data was collected is that the rails were removed when collecting

the latter. It could be argued that the rails mainly add mass, and some stiffness, to the modes with

significant motion in the girder. The four modes with little to no motion in the girder presented in table

4.1, i.e. mode 3, 4, 7 and 8, should therefore not be affected much by the removal of the rails. The

natural frequency estimates from the operational data for these four modes should therefore be very

close to the ones found if the same monitoring set up was used when collecting the experimental data.

When presented with the ”measured” natural frequencies or the results from the system identification

methods in chapter 5, the presented values will be the ones found from PP method on experimental

data, supplemented with the ones found with FDD on operational data if not found from experimental

data.
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5 Finite element models

Two FE models were constructed for this paper, one simple beam model, and one more detailed shell

model. Both FE models and the choice of numerical damping are presented in this chapter.

The steel in the bridge is assumed to have the material properties; E = 210GPa, ν = 0.3 and ρ =

7850kg/m. Both FE models were updated to better fit results from the system identification. The

updating was done by changing the E-modulus of different structural parts and is also presented in this

chapter.

5.1 Beam model

5.1.1 Element types

The element library in Abaqus contains several types of beam elements. A “beam” element in this

context is an element where assumptions are made so that the problem is reduced to one dimension

mathematically, i.e. the primary solution variables are functions of position along the beam axis only

[19]. For such assumption to be reasonable, a beam must be a continuum in which we can define an

axis such that the shortest distance from the axis to any point in the continuum is small compared to

typical lengths along the beam axis. This assumption can be justified when establishing a numerical

model of the Hell Bridge and a beam model is therefore introduced.

The Abaqus user manual states; “Timoshenko beams allow for transverse shear deformation. They can

be used for thick (“stout”) as well as slender beams” [19]. These elements in Abaqus are formulated

so that they are efficient for thin beams, where transverse shear deformations are negligible and Euler-

Bernoulli theory is accurate, as well as for thick beams where the transverse shear deformations should

be accounted for. Because of this, the Timoshenko beam elements are the most effective beam elements

in Abaqus [19]. The use of truss elements and Euler-Bernoulli elements could be justified for several

parts in the model, and would most likely decrease the run time of the analysis somewhat, but only

B31 Timoshenko beams were used for simplicity. A combination of Timoshenko beam elements, Euler-

Bernoulli beam elements and truss elements would also possibly alter the results of the eigenvalue

analysis somewhat, but the difference from only using Timoshenko beam elements should not be drastic.

The beam sections of the primary system of the Hell Bridge are mostly composed of plates, L-profiles,

and nails, making up different profiles. All beam sections in the beam model were described by the

Abaqus beam cross-section library, classified as I-profiles, T-profiles, L-profiles, rectangular profiles or

generalized. To fit the beam cross-section library, all I- and T-profiles with varying thickness of flanges

and webs were evenly smeared out. The resulting basic finite element model is presented in figure 5.1.
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Figure 5.1: The figure shows the basic configuration of the Beam FE-model of the Hell Bridge

5.1.2 Service loads

The main contribution of the non-structural mass of the Hell Bridge test arena comes from the wooden

sleepers resting on top of the stringers and cross girders. The estimate of the non-structural mass is

therefore based on a rough estimate of the weight of the wooden sleepers only. From looking at the

drawings of the Hell Bridge it is assumed that the average dimension of a wooden sleeper is 26x16x260

cm and that there are 130 wooden sleepers in total. From guidelines in the governing Eurocode for

wooden sleepers and bearers, NS-EN 13145 [20], it is further assumed that the wood used is European

oak with a density of 702 kg/m3. From computation, this gives an approximate non-structural mass

of 10 tons which is smeared out evenly over the stringers and cross girders. With the weight of all

structural parts adding up to approximately 60 tons this gives an approximate total weight of 70 tons.

5.1.3 Boundary conditions and other constraints

The following discussion about the boundary conditions of the bridge is referred to figure 5.1, where

the coordinate system in the bottom left corner of the figure has its origin in the back-left corner of

the bridge. The bridge is assumed simply supported in its length direction, which is in good agreement

with its new fundaments at the Hell Bridge Test Arena and also with the drawings. It is restrained in

the x-direction in both corners at one end and restrained at all four corners in y- and z-direction.

There are a great number of joints in the Hell Bridge. For every single beam in every single joint, a

choice has to be made; should the beams attaching form a completely stiff joint or should some degrees of

freedom (DOFS), typically rotational DOFS, be unconstrained? It’s important to realize that imposing

constraints increases the stiffness of the system, which once again increases the natural frequencies of

the system. A completely stiff joint does not exist in reality, but this is a fair simplification for most

joints in the Hell Bridge. For the beam model, all beam connections but the diagonal beams in the side

walls and the bracing in the girder, see figure 5.1, were fully constrained. Both the diagonal beams and

the bracing were modelled as free to rotate out of their respective planes, with the remaining 5 DOFS
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constrained to follow their respective master nodes. These connections are made by thin plates, see

figure 5.2 (a) and (b), so in reality they are not totally free to rotate, but without modelling a spring

it´s the representation believed to be closest to reality.

(a) Connection joint with diagonal beam (b) Connection joint with bracing

Figure 5.2: (a) shows the connection joint in all four corners at the top. (b) shows a connection joint in the
bottom of the girder.

All constraints were imposed by choosing one master node at the end of a carefully chosen beam for every

joint and the end of the remaining beams attaching were set as slave nodes. The slave and master nodes

were then tied together with kinematic tie constraints, see under the keywords Constraint, Kinematic

and Tie in the Abaqus keywords reference manual [19].

5.1.4 Natural frequencies

With the element model established according to the description in previous sections, a non-linear

eigenvalue analysis was performed to extract the natural frequencies. The results showed that almost

all modes with significant motion in the girder were too stiff, while all modes where mainly the walls were

excited (little motion in girder), were too soft, when compared to the results of the system identification,

see table 5.2. There are a number of possible reasons for this:

• Most profiles in this bridge are composed by different profiles and nails. The assumption that

these profiles are fully bonded will overestimate their stiffness

• Simplifications made to profiles looking like I- and T-profiles to fit the Abaqus beam section library.

In the model, theses profiles have the correct area, height and width, but the thickness is changed

somewhat, resulting in approximate cross sectional properties.

• Most joints were modelled as completely stiff which makes the FE model stiffer than in reality

• The simplification for the stiffeners, presented in section 5.1.5. This simplification will most likely

cause the stiffeners to be softer than they actually are.
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To achieve a better fitting between the modal parameters obtained from the different system identifica-

tion and the FE model, the model was updated by adjusting the stiffness of different parts in the model.

The adjustments made are presented in table 5.1. The names of the parts in table 5.1 are shown in

figure 5.3. Bottom stiffener is the black triangle in the bottom left of figure 5.3, while top stiffener is

the rest of the stiffener.

Structural part E-modulus Percent of original E = 210 GPa
Frame 178.5 GPa 85%

Diagonal beams 189.0 GPa 90%
Stiffener bottom 420.0 GPa 200%

Bracing 157.5 GPa 75%
Stiffener top 252.0 GPa 120%

Inside stiffener 252.0 GPa 120%
Cross girder 231.0 GPa 110%

Table 5.1: Adjustments made to the tuned beam model

Figure 5.3: Names for different structural parts

Table 5.2 displays the 14 first natural frequencies found from the eigenvalue analysis and how they

deviate from measured natural frequencies. All modes found from the system identification were also

found in the FE model. The first transversal bending mode, first vertical bending mode and first

torsional mode are shown in figure 5.4 (a), (b) and (c) respectively. The remaining modes can be found

in appendix A.
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Table 5.2: Shows the 14 measured natural frequencies, frequencies from the eigenvalue analysis of the beam
model before and after updating and the deviation from the measured values. Frequencies are given in Hertz
[Hz]

(a) 1st transversal bending mode (b) 1st vertical bending mode (c) 1st torsional bending mode

Figure 5.4: Mode shape estimates from beam model

With the 14 first modes of the Hell Bridge represented in the FE model, with good correlation when

compared to data from the full scale dynamic analysis, the model was evaluated to be sufficiently

accurate to move on with modelling the known damage in the connection joint between stringer and

cross girder.

5.1.5 Sensitivity analysis

When establishing the beam model, a number of simplifications had to be made. One significant

simplification is the one made to the outside stiffeners of the bridge. In reality, all vertical beams except

the two beams furthest out on both sides, have outside stiffeners similar to the one shown in figure 5.5

(a). According to the drawings these stiffeners are rounded at the bottom and a 10-mm thick plate fills

the bottom part, see figure 5.5 (a) and (c). In the FE model this is simplified to a triangle, made out

of beams, shown in figure 5.5 (b). This simplification will possibly have a great impact on the mode

shapes and natural frequencies from an eigenvalue analysis of the FE model. A sensitivity analysis

was therefore performed to evaluate the effect of increased stiffness in the bottom part of the outside

stiffeners. This was done by increasing the E-modulus of the bottom triangle in figure 5.5 (b) (also see
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black triangle in bottom left of figure 5.3). The results of the analysis are presented in table 5.3. Only

8 modes are shown as this is more than enough to show the trend.

(a) Stiffener from drawing (b) Simplified stiffener in FE model (c) Stiffener on the bridge

Figure 5.5: Figure (a) shows a drawing of one of the stiffeners, figure (b) shows the simplified version used in
the beam model and figure (c) shows one of the stiffeners from the actual bridge.

Table 5.3: Shows the effect of increasing stiffness of bottom triangle in stiffener on chosen modes. Frequencies
are given in Hertz [Hz].

Table 5.3 shows that the increased stiffness has little effect on the vertical bending modes, moderate

effect on the transversal bending modes and a big effect on torsional modes and modes where the main

motion is in the side walls. The conclusion is drawn that with the simplifications made, the stiffness in

the bottom part of the stiffener must be chosen with care, as it is a simplification with a considerate

impact on the estimated natural frequencies. To model the outside stiffeners in a more accurate way, a

shell model should be introduced, see section 5.2.

A sensitivity analysis was also performed for the choice of element size. In the presented beam model,

a global element size of 0.25 m for the outside stiffeners, 0.5 m for diagonal beams and bracing, and

0.125 m for all remaining structural parts was chosen. To see how this choice effected the results of the

eigenvalue analysis the whole mesh was refined by a factor of five, i.e a global size of 0.05 m for the

outside stiffeners, 0.1 m for the diagonal beams and bracing, and 0.025 m for all remaining elements.

Table 5.4 shows the results for the first 14 modes from the eigenvalue analysis for the FE model, the

same model with a refined mesh and the percent change.
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Table 5.4: Displays the effects of refining the mesh by a factor of 5. Frequencies are given in Hertz [Hz]

As the table displays, the changes are marginal. When using finer mesh, the run time of the analysis

increases, so the small changes presented in table 5.4 support that the choice of element sizes in the

beam model are sufficiently small.

5.2 Shell model

Abaqus user manual reads: “Shell elements are used to model structures in which one dimension, the

thickness, is significantly smaller than the other dimensions”[19]. As most profiles in the Hell Bridge are

composed by different slender plates, L-profiles and nails, an FE model constructed by shell elements

can also be justified. An FE model with beam elements is already presented in the previous section,

but construction of a shell model allows for the valuable comparison of two different models. As a shell

model generally allows for a more detailed representation, this also provides the opportunity to model

damage in a different way than in the beam model, if necessary.

Figure 5.6 shows the constructed shell model and the coordinate system used with its origin in the back-

left corner. The model consists of 399 part instances, from which 381 are made of shell elements and 18

are made of beam elements. The parts have been drawn individually, then partitioned into regions for

constraint and mesh assignment. The beam elements are used in the truss of the outside stiffeners as

this makes the procedure of modelling the stiffeners significantly easier and should not have any effect

on the results relevant for this paper.
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Figure 5.6: The figure shows the basic configuration of the Shell FE model of the Hell Bridge.

5.2.1 Constraints, boundary conditions and service load

A typical joint on the Hell Bridge is shown in figure 5.7. Due to the large number of bolts used in

the connections, all connection are modelled as completely stiff. This is done by using tie constraints

for coinciding shell elements where all slave nodes within a user specified tolerance are constrained to

follow their respective master surfaces. The default value provided by Abaqus was used for the distance

tolerance, which is 10% of the typical master facet diagonal length. As recommended in the Abaqus

user manual, the surfaces that coincide with most other surfaces were chosen as the master surface. If

present, all connection plates were therefore chosen as master surfaces in the tie constraint formulations

for this model. For joints with no connection plate, the part with the greatest stiffness was assigned

master surface.

Figure 5.7: A typical plated connection on the Hell bridge
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The same boundary conditions were used for the shell model as for the beam model, i.e. simply supported

in its length direction.

The same rough estimate of non-structural mass was also added to the shell model, once again evenly

smeared out over the stringers and cross girders. It should be mentioned that the weight of the structural

parts of the shell model is approximately 66 tons, considerably higher than for the beam model, giving

an approximate total mass of 76 tons.

5.2.2 Element types and mesh

When making the choice of element type in a shell model, it’s important to have the goal of the numerical

model in mind. For this paper the goal has been to get a good estimates of the dynamic behavior of the

bridge, and measure nodal displacement and acceleration accurately. For this purpose, a 4-node element

with reduced integration should be sufficient. The use of reduced integration reduces the computational

time of the analysis and avoids the error source of overestimated stiffness, which regular integration

methods typically tend to do [21]. The effect of reduced integration method vs regular integration

method on the natural frequency estimates is presented in the sensitivity analysis in section 5.2.4.

As defined in the Abaqus user manual, for a problem where the shell thickness exceeds 1/15 of the

element length, thick shell theory is advised [19]. Abaqus provides a high number of general-purpose

conventional shell elements, which can be used for both thick and thin plate theory. These elements use

thick shell theory, also known as shear-flexible theory or Mindlin Theory, as the shell thickness increases

and become discrete Kirchhoff thin shell elements as the thickness decreases. Since the Abaqus user

manual states that general-purpose shell elements should be the users first choice from the element

library and that the Hell Bridge consist of both thick and thin shells, a general-purpose conventional

shell element should be a good choice [19]. The choice of element therefore landed on the S4R and S3R

shell elements, both classified as general-purpose conventional shell elements. The 3-node S3R shell

elements were used for all areas where the 4-node S4R shell elements were not compatible with the

geometry.

Since neither S4R or SR3 tend to get distorted, no emphasis was put on avoiding distortion when

assigning mesh regions. Something to note when using tie constraints is that the master surface must

be larger than the slave surface for the surfaces to tie together properly. For this reason, three main

element sizes were used in the shell model. The elements were created using the uniformly edge seeding

tool in Abaqus CAE, creating elements with different sizes at each seeding; 50mm, 65mm and 75mm

respectively.

5.2.3 Natural frequencies

From the eigenvalue analysis of the shell model, the same 14 modes found in the beam model were also

found in the shell model, only at somewhat different frequencies. Initially with a uniform E-modulus of

210 GPa, all vertical modes with significant vertical and transversal motion in the girder were too stiff

when compared to the natural frequency estimates from the system identification. Similarly, all modes

with the main motion in the side walls (little motion in girder) were found to be too soft. There are

several possible reasons for this, similar to the ones discussed for the beam model:
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• Most profiles in this bridge are composed by different profiles and nails. The assumption that

these profiles are fully bonded will overestimate their stiffness

• Simplifications of different profiles to make the modelling process easier. The simplifications made

are in such a way that the cross sectional area and the second moment of inertia about the strongest

bending axis remained unchanged.

• The simplifications made to the outside stiffeners geometries, presented in section 5.2.4. As the

plate in the bottom part of the stiffeners are somewhat represented in the model, this should pro-

vide a better representation than the beam model, but the simplifications made are still expected

to cause the stiffeners to be softer than in reality.

As for the beam model, the shell model was updated to fit the natural frequencies estimates from the

system identification better. This was once again done by adjusting the stiffness of different structural

parts, presented in table 5.5. The parts with adjusted stiffness are highlighted in figure 5.8.

Structural part Elastic modulus Percent of original E = 210 GPa
Bracing 168.0 GPa 80%

Stiffener plates 420.0 GPa 200%
Main girders 189.0 GPa 90%

Table 5.5: Adjustments made to the tuned shell model

Figure 5.8: Shows structural names of tuned parts in the shell model

Table 5.6 displays the 14 first natural frequencies found from the eigenvalue analysis of the shell model

and how they deviate from the results of the system identification. The table displays that a fairly good

fitting is achieved. Further discussion and comparison of the two numerical models will be presented

section 5.4. The mode shape estimates from the shell model are displayed in appendix A
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Table 5.6: Shows the 14 measured natural frequencies, frequencies from the eigenvalue analysis of the shell model
before and after updating and the deviation from the measured values. Frequencies are given in Hertz [Hz].

5.2.4 Sensitivity analysis

Like for the beam model, the vertical stiffeners in the shell model were simplified. The main simplifi-

cations regard the geometry of the stiffeners. As previously presented in section 5.1.5, the bottom of

the stiffeners are rounded in reality. In the shell model the stiffeners are simplified to have a triangular

shape, shown in figure 5.8. The plates in the model are also simplified to have a triangular shape and

are smaller than in reality. These simplifications will most likely reduce the stiffness of the stiffeners

and affect the global stiffness of the bridge. A sensitivity analysis was therefore performed to evaluate

the effect of increased stiffness in the bottom part of the outside stiffeners. This was done by increasing

the E-modulus of the ”stiffener plate”, highlighted in the bottom left part of figure 5.8. The results

are presented in table 5.7, where the plate stiffness is increased from 2 times original stiffness in the

updated model to 5, 10 and 100 times the original stiffness of 210 GPa. Only 9 modes are shown as this

is enough to show the trend.

Table 5.7: Shows the effect of increased stiffness of plate in bottom part of stiffener on chosen modes. Frequencies
are given in Hertz [Hz]

Table 5.7 shows that the increased stiffness has little effect on the natural frequencies for the vertical,

transversal and torsional bending modes with considerate motion in the girder. The only modes that

are seriously affected by the stiffness increase are the modes where mainly the sidewalls are excited.

The conclusion is drawn that the simplifications of the stiffeners are good ones as they mainly effect
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the stiffness of the sidewalls which easily can be tuned without it affecting the other global modes

significantly.

A sensitivity analysis for the choice of elements was also performed. As previously discussed, the choice

of element type should be made in accordance with the goal of the analysis. Since the model was

constructed for lower order elements, S3 and S4, no emphasis was put on distortion when assigning

mesh regions. The result of this is that the model becomes almost incompatible with higher order

geometric elements which would require a very fine mesh in the regions to prevent element distortion.

The sensitivity analysis therefore only presents the comparison of reduced integration method vs regular

integration method. The results are presented in table 5.8, where the third column presents the natural

frequencies from the eigenvalue analysis when using reduced integration method, the fourth column

shows the same for regular integration method and the fifth column shows the percent change between

the two. For both cases the 4-node element is used where the geometry allows for it, if not a 3-node

element is used instead.

Table 5.8: Shows the effect of element choice on the natural frequency estimates in the shell model. Frequencies
are given in [Hz]

The table supports the statement that regular integration methods tend to overestimate the stiffness of

the system. From the 14 first modes found from the eigenvalue analysis, all natural frequencies but one

increase, some as much as close to 10%. This goes to show that the type of element in a shell model

has a great impact on the results of an eigenvalue analysis and should therefore be chosen with care,

preferably with support in literature.

5.3 Damping in the finite element models

In section 2.2 some brief theory about damping was presented with further emphasis on the easily

implemented Rayleigh damping method, used for the numerical models in this paper. The choice of

Rayleigh damping is partially justified by results presented by Frýba in Dynamics of Railway Bridges

and partially by the need to limit the scope and extent of this thesis.

Frýba presents data from a wide specter of different railway bridges showing a considerable spread

44



in damping ratios. He further also presents a dependence between damping ratio and amplitude of

displacement for the different bridges [7, chapter 5]. This shows that damping in structures is a highly

complicated subject and that extensive research is most likely necessary to determine the damping of

the specific bridge being analyzed. Regardless of this, as a guideline, Frýba recommends a damping

ratio of ξn ≈ 0.013 for steel railway bridges with spans larger than 20 m.

General recommendations for damping in dynamic analysis of railway bridges can also be found in the

governing Eurocode, NS-EN1991-2 [22, chapter 6]. It states that only lower bound estimates of damping

shall be used and recommends a damping of ξn ≈ 0.005 for steel bridges with spans greater than 20 m.

Recall from section 2.2 that the Rayleigh coefficients, a0 and a1 are calculated from specifying two

damping ratios, each with a natural frequency at where the respective damping ratios should apply.

Generally, when performing dynamic analysis, it is important that all modes with considerable contri-

bution to the dynamic response have a reasonable damping ratio. Overdamping of significant modes will

underestimate the response of the structure and provide non-conservative results. For this thesis where

local modes of the stringers also are very important for the acceleration response used in the different

damage identification techniques, it should also be assured that these modes are assigned reasonable

damping ratios. This means that for the most important global modes, we need to apply an appropriate

damping ratio for natural frequencies in the range 20–160 rads (≈ 3.1 − 25Hz). Further from analyzing

numerically simulated acceleration data in section 7.5.1.2.1, with the exact same set up as the exper-

imental data, it is believed that the stringers have their first important local modes in the frequency

range 125–600 rads . Assigning appropriate damping values in such a wide frequency range is challenging

with the simple Rayleigh damping method, but was attempted by finding a middle way.

This was done by assigning a damping ratio of 0.5%, i.e. ξm = 0.005, for the first natural frequency

ωm = ω1 = 2πrad ∗ 3.13Hz = 19.67 rads . The upper frequency, also assigned a damping of 0.5%,

was set equal to 250 rads (≈ 38.2Hz). Figure 5.9 shows that the damping ratios in the range does not

exceed the damping value recommended by Fryba and that the minimum damping ratio is found to be

approximately 0.28%. One might argue that the damping is somewhat low for several important modes

in the range 50-150 rad
s , but as a higher damping in this range results in overdamping for important

local modes it is not applied. The choice of damping is justified by the goal of the numerical analysis

in mind; to find a good numerical representation of the damaged structural component from studying

imposed vibrations.
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Figure 5.9: Shows the resulting damping ratios when a damping ratio of 0.5% is chosen in ω1 = 19.67 rad
s

and
ω2 = 250 rad

s

The specified damping ratios and their respective natural frequencies resulted in the Rayleigh coefficients:

a0 = 0.1824 and a1 = 3.7e−5.

5.4 Comparison beam and shell model

The main difference between the beam model and the shell model are the elements used and the represen-

tation of the joints and outside stiffeners. The assumptions made for the beam model mathematically

reduces the problem to a one-dimensional problem, while the assumptions made for the shell model

mathematically reduces it to a two-dimensional problem. For both models, the shape of the stiffeners

are simplified, but the shell model allows for a plate to be modelled in the bottom part, as in reality,

while the beam model simplifies the plate as a beam. In the beam model, nearly all joints are modelled

as completely stiff, while the shell model has included the plates in the connection joints. Other than

this, the simplifications made for the two models are fairly similar.

In table 5.9 the 14 first natural frequencies found from the system identification is once again presented,

now only with the deviation for the updated beam and shell model. As the table shows, there is no

clear pattern in whether one model is stiffer than the other as this varies from one mode to the other.

Both models fit the natural frequencies found from the system identification well, without one model

sticking out as more accurate than the other.
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Table 5.9: Shows the 14 first measured natural frequencies and how the natural frequencies of the beam and
shell model deviate from these values.

Since both numerical models are found sufficiently accurate for accessing the dynamic behavior of the

Hell Bridge and that the procedure of establishing the shell model was significantly more troublesome

and time consuming than the beam model, the conclusion is drawn that a rather simple beam model

is the best choice for the purpose of finding the global dynamic behavior of the Hell Bridge test arena.

It should be noted that the shell model was mainly constructed because it allows for more detailed

modelling, which might be necessary to achieve a good representation of the known damage in the Hell

Bridge. A detailed introduction to the damage and how this is implemented in the numerical models is

thoroughly presented and discussed in chapter 7.
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6 Damage identification

In this chapter, the use of modal characteristics for bridge monitoring is investigated. The objective is to

establish a time and cost efficient method to identify severe structural faults. The techniques described

are based on results obtained with a modal hammer and accelerometers, presented in chapter 3.3.2.

Three out of the four methods presented below are previously investigated in the paper Inspection of

steel bridges by modal hammer from bridge deck only [23]. These methods are further investigated in

this chapter and a fourth method, normalization, is introduced.

As described in section 2.4.1, damage will cause a change in the stiffness, mass and energy dissipation

of the structure, which for this paper is believed to be reflected by analyzing time series obtained from

imposed vibrations. Response is measured from accelerometers located on the damaged and undamaged

structural components, providing a basis for comparison. By performing analysis in both time and

frequency domain, results are compared and it is established if it is possible to find indication of the

damage.

Already before applying any techniques to the acceleration response time series, several observations

indicated abnormal behavior of the damaged beam. The person performing the hits with the modal

hammer states that he clearly felt, and could hear, the difference between hitting on the beams of

the undamaged structural components vs the beam of the damaged structural component. All hits

performed directly on the beam of the damaged structural component, i.e. impact location X10 and

X9, also far exceeded the sensitivity level of the sensor attached to it, i.e. A06.

In this chapter it’s important to have the monitoring set up of the experimental data fresh in mind.

Figure 6.1 therefore displays the location of the damage and all sensors and impact locations discussed

in the following sections.

Figure 6.1: Overview over location of damage and all accelerometer and impact locations relevant in this chapter
[23].
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6.1 Time domain

6.1.1 Moving standard deviation

Figure 6.2 displays the moving standard deviation plots of the acceleration response of sensors A01,

A03, A04 and A06 for impact location X7 and X3 with a window length of 21.

Figure 6.2: Moving standard deviation for relevant sensors, impact locations X3 and X7.

If we first consider the two top plots in figure 6.2 and assume that there is no damage present, we would

expect the curves in each respective plot to be similar, i.e. the curves should follow each other closely.

This means that the curves of the sensor pair A01 and A03 for impact location X3 should follow each

other closely, and similarly for the curves of sensor pair A04 and A06 for impact location X7. The figure

clearly shows that this is the case for sensor pair A01 and A03 with impact location X3. The curves of

sensor pair A04 and A06 for impact location X7 on the other hand show a clear difference. The response

of sensor A06 located on a damaged structural component appears to be significantly lower than the

response of sensor A04 located on an undamaged structural component. These observations indicate

that the moving standard deviation can be used to detect damage in the connection between stringers

and cross girders. It should be noted that the distance between impact location and all four sensors

considered is identical and fairly short.

Further only consider the two bottom plots of figure 6.2 where the impact locations are further away

from the sensor pairs and the distance between impact location and the sensors in each sensor pair are

different. If no damage is present in the components considered, we once again would expect the curves

of each respective sensor pair to follow each other closely. As the plots show, this is neither the case

for sensor pair A01 and A03 or sensor pair A04 and A06. The observation is made that the curve of
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sensor A01, i.e. the sensor furthest away from impact location X7, looks very similar to the curve of

sensor A06. Since sensor A06 is located on a damaged structural component and A01 on a undamaged

structural component this implies that for impact locations further away the response of a undamaged

structural component looks similar to the one of a damaged structural component.

Considering the peak value of the curves of sensors located on undamaged structural components only

for impact location X7, i.e. A04, A03 and A01, it is clearly observed that the magnitude decreases as

the distance between impact location and sensor increases. This means that the energy of the vibrations

arriving at the different sensors decreases with distance travelled, a phenomenon covered by the term

damping. This observation probably explains why moving standard deviation is able to provide the

indication of damage; as there is weak/no contact between stringer and cross girder at the damaged

location, the vibrations arriving at sensor A06 have to travel a further distance, resulting in a loss of

energy.

All the observations discussed above lead to the conclusion that the moving standard deviation works

as a technique for damage identification when the sensors considered are in the vicinity of the impact

location. Further it may also be required that the distance between impact location and the sensors

compared are equal, but more data with a different set up is required to fully confirm this statement.

As mentioned in section 2.4.1.1.1, the choice of window length in figure 6.3 is set to 21 data points,

i.e. the standard deviation value for each point calculated includes 21 elements. The choice of window

length was based of plotting the correlation between the moving standard deviation peak values of

the two accelerometers being compared for different numbers of sampling points. The sample points

range from 3-31 with a step length of 2. Figure 6.3 displays how the correlation between the moving

standard deviation peak values only decreases by approximately 10% in the given sampling range for

accelerometers A01 and A03 (impact location X3), both placed on undamaged structural components.

Similarly, for accelerometer A06 and A04 (impact location X7), where A06 is located on the damaged

structural component and A04 on a undamaged structural component, the correlation only goes up

with 15% in the sampling range. This proves that the moving standard deviation method is robust with

respect to the choice of window length, i.e. a wide specter of window lengths can be chosen without

compromising its ability to indicate damage.
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Figure 6.3: Shows correlation between MSD peak values for different window lengths

A higher number of sampling points results in a smoother plot. The choice of sampling points should

be high enough to display the trends in the data sets clearly, but not so high that the smoothness

compromises the ability to indicate damage.

6.1.2 Cross correlation

Observations made from evaluating the moving standard deviation of the acceleration response are

also made by analyzing the cross correlation. Figure 6.4 shows the normalized cross correlation of

accelerometer A06, A04, A03 and A01 to accelerometer A05 and A02 for impact location X7 and X3,

respectively. A05 is given as reference sensor for impact location X7 and A02 is given as reference sensor

for impact location X3. Generally, if no damage is present in the structural system, the cross correlation

is expected to decrease with increasing distance between sensor and reference sensor. Therefore it should

be mentioned that distance between reference sensor and sensor considered is similar for the two first

rows of plots in figure 6.4, while it increases from row 2 to 3 and row 3 to 4, see figure 6.1 if unclear.

Because of the symmetry in the set up used when collecting the experimental data, cross correlation

gives the opportunity to compare the results for impact location X3 and X7 to each other. If no damage

is present in the structural system, one would expect the top 4 plots in figure 6.4 to show a similar

trend. Further, one would expect the two plots in the third row to show a similar trend, and finally the

two plots in the fourth row to show a similar trend. All plots are normalized in such a way that the

autocorrelations at zero lag are equal to 1. Hence, a correlation of 1 in the plots in figure 6.4 represents

a complete match, or 100% correlation.
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Figure 6.4: Normalized cross correlation for relevant sensors, impact location X3 and X7.

When considering the top four plots, three out of four plots show a similar trend. The plot showing a

different trend is the top left plot, giving the cross correlation between sensors A06 and A05 for impact

location X7, where the peak correlation is significantly lower. As sensor A06 is the only sensor connected

to a damaged structural component, this shows that the cross correlation does correctly identify the

presence of damage.

Further, considering the bottom four plots, comparison of the two plots in row three does not indicate

any presence of damage, while comparison of the two plots in row four once again indicates damage.

The cross correlation for A06 to A02 for impact location has no distinct peak and has a different shape

than the cross correlation for A01 to A05 for impact location X7.

From the 8 plots in figure 6.4, two indicate the presence of damage, both for sensor A06, but for

different reference sensors and impact locations. For the top left plot the distance between reference

sensor and sensor is short, while for the bottom right plot the distance is greater. This indicates that

cross correlation provides identification of damage regardless of distance between reference sensor and

sensor. The technique is only tested for a short and equal distance between reference sensor and impact

location, so to say anything about its applicability for greater distance between the two, further research

has to be done.

53



Once again the decay in amplitude when moving further away from reference sensor probably explains

why we are able to detect damage with cross correlation; as the connection between stringer and girder

for the damaged structural part is weak/ not present, the vibrations have to travel further, which again

leads to a weaker cross correlation.

The exact same setup as discussed above was repeated for 2 more hits at the same impact locations,

not presented here, but shown in appendix C. The results look very similar and provide the same

information, hence further establishing cross correlation as a good technique for damage identification.

Figure 6.5 shows the time lag between maximum cross correlation for the four sensors equally far away

from reference sensor and impact location, i.e A01 and A03 to A02 for impact location X3, and A04

and A06 to A05 for impact location X7. Three bars are plotted for each combination, one for each

hit performed. All four combinations have equal distance between sensor, reference sensor and impact

location.

Figure 6.5: Time lag; A01 and A03 to A02 for impact locations X3 and A04 and A06 to A05 for impact location
X7.

If no damage is present in the structural system, all time lags in figure 6.5 should be fairly similar. As

displayed in figure 6.5, this is not the case for sensor A06 located on the damaged structural component.

This observation is strongly correlated with the assumption that the vibrations have to travel a further

distance for the damaged structural part.

6.1.3 Normalization

Figure 6.6 shows the normalized acceleration response of sensors A01, A03, A04 and A06 for impact

locations X3 and X7. Originally it would be expected that if there is no damage present in the structural

system, all curves should show a similar trend with the same decay in signal with time. From considering

the 6 plots of the sensors located on undamaged structural components, i.e. all sensors but A06, the
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bottom right plot clearly shows that this is not the case. It is observed that as the distance between

impact location and sensors increases, the damping in the signal decreases. This observation indicates

that for this technique to be able to indicate damage, the sensors considered have to be equally far away

from the impact location.

From the above we further expect that if there is no damage present, the four top plots should show

a similar trend, the two plots in the third row should show a similar trend and finally the two plots in

the fourth row should show a similar trend. If there is damage present the response of the damaged

structural component should show a clear difference from the undamaged structural component.

Figure 6.6: Normalized acceleration plots of relevant sensors, impact locations X3 and X7.

From doing these comparisons the following observations are made: 1) normalization works as a tech-

nique for damage identification when the sensors considered are in the vicinity of the impact location, 2)

it seems to be required that the distance between impact location and the sensors compared are equal

and 3) for impact locations further away from the sensor considered the response of an undamaged

structural component looks similar to the one of a damaged structural component (see two bottom

plots).
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6.2 Frequency domain

6.2.1 Frequency response function

The FRFs established for sensors A01, A03, A04 and A06 for impact locations X3 and X7 are shown

in figure 6.7. For sensors A01 and A03 at impact location X3 and X7, it is expected that the response

is fairly similar since both sensors were located on undamaged structural components and close to each

other. Furthermore, to be able to indicate damage similar behavior in response is not expected for

sensors A04 and A06 at impact location X3 and X7, as sensor A06 is located on the damaged structural

component.

Figure 6.7: FRF of sensors A01, A03, A04 and A06 for impact locations X3 and X7.

From looking at the different plots in figure 6.7, we clearly observe the first and third vertical bending

modes from the two first peaks for the two plots on the left-hand side. Similarly for the two plots on the

right-hand side, the three first vertical bending modes are located. Except from these observations it’s

hard to find any valuable information from the figure, but it’s still believed that the information about

the damage should be there. To provide a better basis for evaluating the results, an effort was made to

get a better understanding of the dynamic behavior of the bridge.
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First, the known damage was modelled in the beam model by allowing one end of the stringer in the

damaged structural component to move freely, i.e. behave like a cantilever. An eigenvalue analysis

was conducted to see the effect of the damage on the global modes of the structure. Further, 3 more

eigenvalue analysis were performed when removing the whole stringer, removing all eight stringers

connecting at mid span, and finally completely removing all stringers and adding the weight of removed

steel as nonstructural mass. The results for the first six modes with significant motion in the girder are

displayed in table 6.1.

Table 6.1: Effect of different levels of damage on global modes. Frequencies are given in Hertz [Hz].

Table 6.1 shows that the stringers have little effect on the natural frequencies of the global modes. From

this it’s concluded that the known damage in the girder of the Hell Bridge is not big enough to impact

the global response of the bridge.

To be able to detect damage one would therefore have to look further into local modes in the girder of

the bridge. As will be presented in chapter 7, the connection between stringer and cross girder are made

up by L-profiles, only physically connected in the webs of the respective beams. This in combination

with the fact that I-profiles (such as the cross girders) generally have low torsional stiffness leads to the

conclusion that if only looking at the stringer of the undamaged structural components, they are best

represented by a simply supported beam. For the stringer of the damaged structural component its

believed that the stringer is best represented by a cantilever.

Based on the discussion above, two simple eigenvalue analysis’s were performed on beams with the same

length and cross-sectional properties as the stringer; one of a simply supported beam, and one of a

cantilever, i.e. beam clamped at one end and completely free to translate and rotate at the other end.

The goal of this approach was to give an indication of where to look for the local vertical bending modes

of the damaged and undamaged structural components.

The first three vertical bending modes of the simply supported beam were found to be 87.3 Hz, 307.5

Hz and 593.2 Hz, and similarly for the cantilever; 31.9 Hz, 174.6 Hz and 423.7 Hz. The first vertical

bending mode for each case is presented in figure 6.8 (a) and (b). Not that the natural frequencies of the

cantilever are significantly lower and that the difference should be possible to see in the FRFs. By the

same arguments as for why the stringers of the undamaged structural components are best represented

by simply supported beams, it is argued that the natural frequencies of the cantilever will probably be

somewhat lower than the ones presented above.
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(a) Cantilever, 1st vertical bending mode. (b) Simply supported beam, 1st vertical bending mode.

Figure 6.8: 1st vertical bending modes for a cantilever beam and a simply supported beam.

With the new knowledge, the exact same plots as shown in figure 6.7 are shown in figure 6.9, only for a

wider frequency range, 0-600 Hz. The magnitude of the peaks in the top right plot was so much higher

than the three remaining plots, that the scaling on the y-axis is different for this plot.

Figure 6.9: FRF of sensors A01, A03, A04 and A06 for impact locations X3 and X7

As figure 6.9 displays, none of the curves of the sensor pairs in each respective plot follow each other

closely, and there is generally too much going on in the plots to see any clear similarities or differences.

This makes it close to impossible to use the plot for damage identification.
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A possible explanation for why the FRFs are so messy and why FRFs expected to look similar don’t is

that when performing the hits with the modal hammer, they were performed on top of the bridge deck

while most accelerometers were attached to the underside of the stringers. This in combination with the

wooden sleepers resting on top of the stringers is believed to introduce noise effects in the stored signal

that degrades the FRFs. Also keep in mind that the analysis of the cantilever and simply supported

beams are simplifications of how they act in reality, therefore only giving a possible indication of where

to find the local natural frequencies.

The discussion above shows that even with a good understanding of both local and global modes of a

structure, it’s still hard to indicate the presence of damage by using the FRFs. Filtering the signal or

applying more advanced methods to extract the modal parameters would be possible approaches that

could be subjected to further work.

6.3 Discussion and summary

This chapter presented a method for performing bridge inspection from the bridge deck by investigating

modal characteristics obtained from imposed vibration. The method uses analysis techniques in both

time and frequency domain. The transmission of the signal as seen in the time domain mainly describes

local phenomena, i.e. local structural response. The FRFs on the other hand generally describes both

local and global structural response. Changes in the global frequencies should be possible to detect if the

damage present is big enough to change the global structural stiffness. As shown by a numerical model

of the Hell Bridge, serious damages may be present without it affecting the global natural frequencies.

Damage detection by looking at global response alone is therefore not advised.

The trends established from the time domain techniques are not seen in the frequency domain technique.

Three possible explanations for this are; 1) the damaged structural component causes a change in the

transmission of the signal that is seen primarily in time domain, 2) the change in transmission of the

signal should be represented somewhere in the frequency range of 20-500 Hz, but is not seen because

of noise in the stored signal, and 3) the results for indication of damage by the use of FRFs is highly

dependent on the damping in the structure, making it difficult to detect this type of damage. Using more

advanced analysis methods for indicating this type of damage in frequency domain should be subjected

to further work.

In all damage identification techniques presented, the procedures are based of comparing the response

of different sensor pairs located on damaged and undamaged structural components. In all applications

where the different techniques prove to work, the distance between impact location and sensors compared

is identical. Since the reason for them being able to provide the identification of damage is believed to

be because the vibrations have to travel a further distance for the damaged structural component, this

strengthens the belief that an equal distance between impact location and sensors compared is required.

For the cross correlation technique it will also be required that the distance between reference sensor

and sensor is equal.

In the presentation of the cross correlation technique it is stated that the results indicate that it works

regardless of distance between sensor and reference sensor. From the discussed in the previous paragraph

this will only be within reasonable measures. Since the cross correlation decreases with increased distance
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between sensor and reference sensor there will be a point where the distance further travelled for the

vibrations to the sensor of the damaged structural component becomes negligible with respect to the

total distance travelled. At this point there will be no visual difference between the cross correlation

of the damaged structural component and the undamaged structural component and the technique will

no longer be able to detect damage.

Based on the results obtained, the following conclusions are drawn:

• Indication of damage is found when analyzed in time domain and not in frequency domain. The

indication of damage is seen from comparison between undamaged and damaged structural com-

ponents.

• Analysis techniques such as moving standard deviation and normalization provide indication of

damage when the impact location is in the vicinity of the sensors being compared. Cross correlation

is only tested for a short distance between impact location and reference sensor, but provides the

indication of damage for both short and greater distance between sensor and reference sensor.

• The type of damage investigated is difficult to observe in the frequency domain. This is believed

to be due to 1) the many global and local natural frequencies indicated by all the sensors which

makes distinction hard to find and 2) noise in the signal, which probably has a greater impact on

the results in frequency domain than time domain.

• The time domain analysis techniques presented are considered feasible for indicating damage from

the bridge deck. Application of the method to indicate damage may be used to confirm the

presence of damage and strengthen the decision for selecting areas that should be subjected to

further investigation.
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7 Implementing damage in numeri-

cal models

With the different techniques for damage identification from the bridge deck established in chapter

6, the known damage was implemented in the numerical models in different ways, with the goal to

obtain the same results. This chapter thoroughly presents the damaged structural component and the

implementation of the damage in the numerical models. Two possible ways to represent the damage

numerically are presented. The first way was done with a spring formulation, both linear and nonlinear,

and was only implemented in the beam model. The second way was to define a friction contact pair

formulation provided by Abaqus, only implemented in the shell model.

7.1 Damage

Figure 7.1 (a) and (b), show pictures of an undamaged structural component and the damaged structural

component investigated, respectively.

(a) Undamaged structural component (b) Damaged structural component

Figure 7.1: a) shows one of the undamaged connection joints between stringer and cross girder. (b) shows the
damage joint connection between stringer and cross girder further investigated in this paper.

As displayed in figure 7.1, the connection consists of three L-profiles, two connecting the webs of the

stringer and cross girder together, only one shown in the pictures above, and the last one lays underneath

the stringer, only connected to the web of the cross girder. Figure 7.1 (a) show that the bottom flange of

the stringer in the undamaged structural components rests on top of the L-profile lying underneath and

that the L-profile connecting the webs is fully intact. Figure 7.1 (b) on the other hand shows that there

is a considerable glitch between the bottom flange of the stringer and the L-profile lying underneath for

the damaged structural component and that the L-profile connecting the webs is cracked in the angle.

Further inspection of the bridge under train load shows that there is considerable vertical motion of

stringer relative to the cross girder, nearly completely closing the gap shown in figure 7.1 (b).

These observations indicate that the stringer behaves somewhat like a cantilever for displacements
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smaller than the glitch between the L-profile and bottom flange of the stringer. If there is no contact

between stringer and cross girder the stringer will act completely as a cantilever, and if there is some

sort of contact between stringer and cross girder, direct contact or contact because of different particles

stuck in between, the stringer will behave somewhere between a cantilever and a beam clamped at one

end and simply supported at the other, probably closer to the cantilever. Possible scenarios are listed

below:

• For displacements of stringer not closing the glitch:

– No contact between stringer and cross girder. Stringer behaves completely like a cantilever.

– Contact between stringer and girder. Normal force on stringer and contact surface remain

constant.

– Contact between stringer and cross girder. Distortion leads to bigger normal force on stringer,

but contact surface decreases.

• For displacement of stringer closing glitch:

– Same three as above until glitch is closed. Clamped at one end and simply supported at the

other when glitch is closed.

The three different cases without the connecting L-profiles are physically presented in the drawings in

figure 7.2

(a) No contact (b) Contact (c) Distorted contact

Figure 7.2: Physical representation of the three different cases discussed above. (a) shows no contact, (b) shows
contact and (c) very exaggerated shows contact for a distorted stringer

Although inspection of the bridge during train load shows that the glitch nearly, or completely, closes,

the question arises if this case is represented by data available in this thesis. For the experimental data

collected, the forces from the hammer impacts are significantly smaller than the forces the bridge is

subjected to during train load. It could therefore be argued that the case where the glitch closes is

not relevant for this thesis as the data collected won’t represent this case. This is further discussed in

section 7.2

For small displacements of the stringer relative to the cross girder, i.e. before the glitch closes, we are

probably faced with a linear problem, possibly with some smaller nonlinear effects from uneven friction

forces. The completely linear problem can be visualized by the free harmonic oscillation of a cantilever.

The smaller nonlinear effects may arise due to dirt particles stuck between stringer and L-profile and by

the effect of distortion discussed above. For displacements closing the gaps we are faced with a highly

nonlinear problem as the stringer now is vertically supported at both ends. This can be visualized by
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an oscillating cantilever where when the displacement reaches a specific value, the free oscillation is

interrupted by an impact in the opposite direction of movement. The impact being contact between

bottom flange of stinger and the L-profile underneath, not allowing the stringer to move any further.

In all attempts to implement the damage numerically the vertical translation degree of freedom (DOF),

i.e. y-direction in figure 7.3, and the rotational DOF about the transversal direction, i.e. z direction in

figure 7.3, of connection between stringer and cross girder for the damaged structural component were

opened. Keep in mind that for both numerical models, the cross girder is set as master node/surface,

stringer as slave node/surface and that for all other connections between stringer and cross girder, all 6

DOFS of the stringer are constrained to follow the cross girder. Further, springs with varying stiffness

and contact formulations were introduced, presented in section 7.3 and 7.4.

Figure 7.3: Shows a drawing of the connection between stringer and cross girder for an undamaged structural
component and its reference coordinate system.

7.2 Data setup and input force

To evaluate how successful the different ways of implementing the damage numerical were, the same

techniques, as presented in section 2.4.1 (theoretical) and chapter 6 (results), were used for the nu-

merically simulated acceleration response and compared to the analysis of the full-scale measurements.

The exact same accelerometer set up, impact locations and sampling frequency (2048 Hz) as for the

full-scale measured acceleration data was also used for the numerical simulations. Due to run time of

the numerical analysis, the durations of all simulations are only 2 seconds, compared to 30 seconds for

the experimental data. This is no problem for the time domain techniques, as all results presented in

chapter 6 only use 0.5 seconds of the acceleration records or less. For the frequency domain technique

on the other hand, more data points would preferably have to be available to establish good and reliable

FRFs. The effects of a shorter record are discussed in section 7.4.1.2.1.

When plotting the measured impulse for impact locations X3 and X7 it was found that all impacts

exceeded the sensitivity of the sensor on the hammer tip. Without the full information of the impulse

it´s impossible to replicate it, so a simplification was used. As it was found that the impulse was mainly

introduced over 5 increments in the experimental data, the acceleration in the numerical models was

therefore also imposed by introducing a triangular impulse over five increments with a peak magnitude
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of 22.3 kN, the sensitivity limit of the sensor on the hammer tip.

Although we don’t have full knowledge about the magnitude of the input force, we know by the shape

of it and linear regression that the magnitude of most impacts is between 22.3 and 25 kN. To gain some

knowledge of how much the stringer of the damaged structural component moves with respect to the

cross girder for an impulse of magnitude 22.3 kN, the displacement of the node at the end of the stringer

of the damaged structural component and the displacement of the node at where the stringer would

attach to the cross girder if no damage present was extracted. It was found that max displacement

between stringer and cross girder was 0.4 mm for the numerical simulations when the damage was

modelled with no contact between stringer and cross girder. As the glitch for the damaged structural

component discussed earlier in this chapter is at least 5 mm, this shows that the glitch is probably not

even close to closing for the experimental data and that we are not faced with this part of the problem

in this thesis.

7.3 Spring formulation

As mentioned earlier, the damage was implemented in the beam model using three different spring

formulations; 1) linear spring with zero stiffness, i.e. same as no spring, 2) linear spring with considerable

stiffness and 3) nonlinear spring. The idea of the first approach was to represent the case where there

is no contact between stringer and cross girder, presented in figure 7.2 (a). The idea of approach 2 and

3 was to represent the case where there is contact between stringer and cross girder, presented in figure

7.2 (b) and (c).

For the first formulation with zero spring stiffness, no further work than setting the spring stiffness to

zero and allowing the damaged end of the structural component to rotate and move free vertically was

done before running the analysis.

For the second formulation with a linear spring, an appropriate stiffness had to be found before running

the analysis. To find an indication of the spring stiffness, the stiffness contribution of the shear force in

figure 7.4 was calculated from equation (7.1), believing that the stiffness should be somewhere between

zero, representing no contact, and the calculated value, representing full contact.

Figure 7.4: Stiffness relation for cantilever.

V =
3EI

L3
∆ (7.1)

With E = 210GPa, I = 1.961e−4m4 and L = 1.75m, the stiffness contribution of the shear force was

found to be approximately 23 MN/m. Although the stringers are 3.5m long, L=1.75 m was used since

all stringers are connected with a u-profile at mid span. After attempting different spring stiffness’s

between 0 and 23 MN/m, the choice landed on a stiffness of 10 MN/m. From the reasoning above, this
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value should be high enough to represent something different than no contact, but still well below the

stiffness representing full contact.

Finally, the third spring formulation was performed with different non-linear springs. Because these

formulations gave few meaningful results, they are only presented in appendix D. The theory used in

the non-linear spring formulations is therefore not included in this paper, but is represented in [24] and

[25].

7.4 Friction contact pair

As previously described, the cross girders serves as master surface in the tie constraint between stringer

and cross girder in the shell model. In the case of a contact formulation, the smallest surface, i.e.

the penetrating surface, should ideally be the master surface[19]. In the contact formulation between

stringer and cross girder, the stringer should therefore be assigned master surface. Unfortunately, it’s

only possible to have one master surface in each tie constraint. Since all connection joints between

stringer and cross girder, except the ones at the ends, have a stringer attaching to the web of the cross

girder from two sides, the stringers can not be assigned master surface. This proved to introduce a

challenge as when attempting to run the contact formulation with the web of the cross girder as master

surface and the end of the stringer as slave surface the simulation was interrupted by two error messages.

The first message stated that a general shell surface can not be used in both a tie constraint and a contact

formulation simultaneously. The second error stated that the end of the stringer, defined as an edge, can

not be used as slave surface in contact formulation. To overcome these two error messages the following

was introduced; first a deformable slave surface of shell elements was attached to the end of the stringer

of the damaged structural component and secondly a analytical rigid master surface was attached to

the web of the cross girder, see figure 7.5.
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Figure 7.5: Shows the small model where the friction contact pair was successfully implemented.

Further the friction contact formulation with the deformable slave surface and the analytical rigid master

surface was defined based on the penalty method described in [?]. Finally, a boundary condition was

introduced pushing the surfaces together, generating the friction force. With the contact formulation

established there are still three parameters affecting the results of the simulation that are easly modified:

• Friction coefficient between the surfaces.

• Boundary condition displacement (defining level of contact between stringer and cross gider).

• Material stiffness of the deformable surface. Most likely close to 2.1 GPa.

The problem converged in a small model local model of two stringers and a cross girder, see figure

7.5, but when expanded to the global model, penetration errors occured and the convergence criterion

was not met. Attempts were made to fix this, but with no luck. It’s hard to say why the penetration

errors occured as the field of contact mechanics requires extensive knowledge when applied to numerical

models. Because there was a need to limit the scope of the work in this thesis and as the other methods

for representing the damage showed promising results, no further work was done for the friction contact

pair formulation.
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7.5 Simulation results

This section presents the results of the different damage identification techniques when applied on

the numerically simulated acceleration data. These results are compared to the ones of the full-scale

measurements presented in chapter 6 and the results are further discussed. When making the comparison

it is not expected that the results of the simulated data look identical to the ones of the full-scale

measurements, but that they show a similar trend and provide the same information. Expecting the

results to be identical is unreasonable as the impulses are not identical and the damping in the numerical

model is seriously simplified. For a thorough presentation of what to expect from the different plots,

see chapter 6.

7.5.1 No spring

7.5.1.1 Time domain

7.5.1.1.1 Moving standard deviation

Figure 7.6 (a) and (b) displays the moving standard deviation plots of sensors A01, A03, A04 and A06

for impact location X7 and X3 with a window length of 21. The plots in (a) are based of the numerical

simulations, and (b) of the full-scale measurements.
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(a) Numerical simulations

(b) Full-scale measurements

Figure 7.6: Shows moving standard deviation for relevant sensors, impact locations X3 and X7, (a) based on
the simulated acceleration data and (b) based on the full-scale measurements.
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If we first consider the two top plots in both figures, they provide the exact same information, i.e.

identification of damage for the structural component A06 is attached to. Further if we consider the two

bottom plots in both figures, the bottom right plots look very similar, but the bottom left deviate from

each other. Whereas for the full-scale measurements the technique only provides identification of damage

for the components considered in the vicinity of the impact location, it also provides identification of

damage for a greater distance between impact location and components considered for the numerical

simulations.

Note that the standard deviation in both figures is approximately halved going from the two top plots

to the two bottom plots, i.e. for impact locations close to accelerometers compared vs further away.

This might be an indication that the overall damping in the numerical model is reasonable.
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7.5.1.1.2 Cross correlation

Figure 7.7 shows the normalized cross correlation for accelerometer A06, A04, A03 and A01 to ac-

celerometer A05 and A02 for impact location X7 and X3, respectively. The plots in (a) are based of the

numerical simulations and (b) of the full-scale measurements.

(a) Numerical simulations
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(b) Full-scale measurements

Figure 7.7: Shows normalized cross correlation for relevant sensors, impact location X3 and X7, (a) based on
the simulated acceleration data and (b) based on the full-scale measurements.

From comparison, both figures provide the exact same information, i.e. the indication of damage for the

structural component accelerometer A06 is attached to. Although the peak correlation is significantly

higher for the undamaged structural component, it could be argued that for the sensor far away from

reference sensor, the identification of damage is somewhat less clear for the normalized cross correlation

of the numerical simulations, see two bottom plots in both figure 7.7 (a) and (b).

Similarly as in section 6.1.2, the time lag between maximum cross correlation for the four sensors equally

far away from reference sensor and impact location, i.e A01 and A03 to A02 for impact location X3,

and A04 and A06 to A05 for impact location X7, were plotted. Figure 7.8 shows that as for the full-

scale measurements, the results display a significant increase in time lag for the damaged structural

component for the numerical simulations.
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Figure 7.8: Time lag; A01 and A03 to A02 for impact locations X3 and A04 and A06 to A05 for impact location
X7.
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7.5.1.1.3 Normalization

Figure 7.9 shows the normalized acceleration response of sensors A01, A03, A04 and A06 for impact

locations X3 and X7. Once again the plots in (a) is the acceleration response from the numerical

simulations and (b) the acceleration response from full-scale measurements.

(a) Numerical simulations
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(b) Full-scale measurements

Figure 7.9: Shows the normalized acceleration response of relevant sensors with impact locations X3 and X7.
(a) is the acceleration response from numerical simulations and (b) is the acceleration response from full-scale
measurements.
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Although comparison of matching impact locations and accelerometers for the figures don’t look identical

(partially because the acceleration response of the full-scale measurements generally are more noisy),

comparison of the four top plots in 7.9 (a) show a similar trend to the four top plots in 7.9 (b) and

clearly indicate the presence of damage for accelerometer A06. Note that for both numerical simulations

and full-scale measurements, the peak acceleration comes in the first wave for all undamaged structural

components whereas it comes after a few oscillations for the damage structural component.

If we further consider the bottom four plots in both figures, the results of the numerical simulations

devaite from the ones of the full-scale measurements. Whereas the bottom four plots of figure 7.9 (b)

indicate what one might interpret as the presence of damage in both A06 and A01, the bottom four

plots of figure 7.9 (a) only does so for accelerometer A06. The same observations as for moving stan-

dard deviation are therefore made; the damage identification techniques provide the same information

when performed on numerical simulations and full-scale measurements only when distance between im-

pact location and the accelerometers considered are short. When the distance increases, the results

from the numerical simulations provide the information we originally would expect from the full-scale

measurements, i.e. only giving indication of damage for the component A06 is attached to.

Also note that although comparison of A04 and A06 for impact location X7 for the simulated data pro-

vides the indication of damage, comparison of the numerical simulations and the full-scale measurements

of A04 for impact location X7 show a significant difference. This might be an effect of the simplifica-

tions in the numerical model resulting in the structural components close to the damaged structural

component being overly affected by the change.

7.5.1.2 Frequency domain

7.5.1.2.1 Frequency response function

The FRFs established from the numerical simulations for sensors A01, A03, A04 and A06 for impact

locations X3 and X7 are shown in figure 7.10 (a), and similarly from the full-scale measurements in 7.10

(b).
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(a) Numerical simulations

(b) Full-scale measurements

Figure 7.10: Shows FRFs for relevant sensors with impact locations X3 and X7, (a) based of numerical simula-
tions and (b) of full-scale measurements.
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The first thing noticed is that the global modes in the range 0-25 Hz are far from as dominant in figure

7.10 (a) as for 7.10 (b), some of them not even found in 7.10 (a). This is believed to be a result of the

fact that the FRFs of the simulated data are only based of 2 second long records vs 30 seconds for the

full-scale measured acceleration records. The result of this seems to be that the response is dominated

by the local response for the shorter record.

With the fact that the use of FRFs proved to not work as a technique to provide indication of damage

for the full-scale measurements, further comparison of figure 7.10 (a) and (b) is not of interest. What

we can take from figure 7.10 (a) is that for impact locations in the vicinity of the accelerometers being

compared, establishment of the FRFs does work as technique for damage identification for an idealized

structure (numerical model). This is seen from comparison between the two top plots in figure 7.10

(a), where in the right plot, the two curves follow each other fairly close and in the left plot the curves

are very different. Although the comparison of the two top plots in figure 7.10 (a) indicate damage, it

should be noted that if we study the top right plot closely we see that there is one peak at around 50 Hz

that is only represented by the curve of sensor A03, and similarly at about 125 Hz only for the curve of

sensor A01. For a case where the difference is not as clear as in the two top plots, this would therefore

possibly provide identification of damage in the top right plot even if not present, making the reliability

of this technique questionable.

Other information taken away from this is indication of where to find the local modes of the damaged

and undamaged structural component, which was used when applying damping in the numerical models.

7.5.2 Linear spring

The results for the different damage identification methods when modelling the contact between stringer

and cross girder of the damaged structural component with a linear spring of stiffness k=10 MN/m

looks very similar to the results obtained with no spring, thus provides the same information. The only

plot where a difference between the two is clearly seen is for the normalized acceleration response for

accelerometer A06. In this subsection, only a comparison of the normalized acceleration response of

accelerometer A06 for different spring stiffness’s is therefore shown, whereas the remaining results can

be found in appendix D.

The results are displayed in figure 7.11, where the first row presents the normalized acceleration response

of the full-scale measurements, and second and third row presents the normalized acceleration response

for the numerical simulations with spring stiffness k=0 and k = 10 MN/m, respectively.
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Figure 7.11: Normalized acceleration response of accelerometer A06 for impact location X3 and X7.

If we once again disregard the fact that the full-scale measured acceleration response is somewhat noisier,

it’s clear that from studying the acceleration response alone, that between the two simulated responses,

the one with zero spring stiffness is the one looking most similar to the acceleration response of the full-

scale measurements. As all remaining results for a spring stiffness of 10 MN/m look close to identical to

the ones displayed in section 7.5.1.1, this becomes the only way to determine which way of implementing

the damage is best. It is therefore concluded that zero spring stiffness gives a better representation of the

damage structural component, which if there is no contact between stringer and cross girder is obvious.
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7.6 Discussion of results

The results presented in section 7.5 show that implementing the damage in the beam model by allowing

the stringer to move free vertically and rotate free about the local transversal beam axis, seems to be a

good representation. Although this approach provides fairly good results, this does not mean that there

is no contact between stringer and cross girder, only that the damage is better represented numerically

with no contact than with different linear and non-linear springs. Different contact formulations should

still be subjected to further investigation.

Further the results show that the moving standard deviation and normalization techniques provide

the same information when applied on numerically simulated acceleration response and acceleration

response from full-scale measurements only for a short distance between accelerometers and impact

locations. Since the moving standard deviation technique indicates that the overall damping in the

model is reasonable, it is further believed that the reason for the above is an effect of local damping

rather than an effect of the damage being modelled incorrectly. For the set up used for the damage

identification techniques the accelerometers compared are only equally far away from impact location

when the impact location is close. For example, accelerometer A01 and A03 are equally far away from

impact location X3, but A01 is somewhat further away than A03 for impact location X7. For the full

scale measurements, this distance that the signal has to travel further damps the signal to an extent

that the moving standard deviation indicates damage, although not present. For the simulated data

on the other hand, the small distance further traveled does not affect the signal. This is an interesting

observation indicating that the damping, or more precisely the local damping, applied in the numerical

model does not represent the damping in the real bridge sufficiently accurate. From the discussion in

section 3.1.6 this can be explained by the choice of damping model, Rayleigh damping. As presented in

section 2.2, damping is a very complex problem, only partially covered by Rayleigh damping. Rayleigh

damping will only be able to catch some of many damping effects of the real structure,and expecting

the study of local vibrations to be identical to full-scale measurements is probably unreasonable.

Recall from section 5.3 that the Rayleigh coefficients, a0 and a1, were calculated based on a damping

of 0.5% in ω1 = 19.67 rads and ω2 = 250 rads . Attempts were made to run the analysis with both

higher and lower damping, applied to both higher and lower ω2, to see if we were able to find a better

representation of the damping, but without any luck. The only valuable information taken from this

was that the acceleration response obtained from the numerical simulations is sensitive to the choice

of damping. The conclusion is made that damping should be subjected to further investigation and

that more advanced methods of numerical damping should be introduced before spending a considerate

amount of time on representing the damage in other ways.

The results of the FRFs established from the simulated data indicates that this technique does work for

an idealized structure, but it should be noted that the results are obtained from a short acceleration

record and therefore may not be reliable. This means that in theory, establishment of the FRFs is a pos-

sible valid technique for damage identification, but this does not mean that it will work in practice. It’s

still believed that noise and local damping effects from both structural and non-structural components,

such as wooden sleepers, will seriously affect the FRFs, especially when looking at local vibrations. It

would therefore be advised to implement more advanced frequency domain techniques to be able to find

indication of damage in the frequency domain.
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When establishing whether or not the different ways of implementing the damage numerically are good

by comparing the results obtained from analysis of full-scale measurements and numerical simulations,

the moving standard deviation and cross correlation techniques indicate that the damage can be modelled

in many different ways. To establish which way of implementing the damage is closest to reality, other

techniques should therefore be used. Looking at the normalized acceleration response and making

adjustments until the simulated acceleration of the damaged structural component is perfectly similar

to the full-scale measured acceleration response would of course ideally be the best way. The problem

with this is that the response is dependent on so many other things than the connection of the stringer

and cross girder at the damage location, making it practically impossible to make them look perfectly

similar. To establish which approach of implementing the damage is best, apart from the obvious, other

techniques should be implemented.

From the results in section 5 it’s concluded that the simplifications made in the numerical model are fair

simplifications for the global dynamic response. Regardless of this, when looking a local response, it is

possible that the simplifications made have a serious effect on the results. For instance, all undamaged

stringers are modelled with all DOFs constrained to follow the ones of the cross girder where they

coincide. As described in section 7, these connections are made up by L-profiles connected to the

web of stringer and girder only, meaning that only constraining the translational DOFS of the stringer

would possibly be a better representation of the joint. Knowing that a beam clamped at both ends

is considerably stiffer than a simply supported beam, this will possibly lead to significantly different

results when looking at local acceleration response. If the goal is to get a best possible representation

of the local response of the stringers, a possible approach would be to establish a shell model with the

same simplifications as the shell model presented in section 5.2, only modelling the connection between

stringer and girder at a much higher detail level, i.e. including all the components of the joint connection

in the model (plates, L-profiles, etc).

When studying the problem of the damaged structural component both for small and big relative dis-

placement between stringer and cross girder, i.e. displacements smaller than the glitch and displacements

closing the glitch, it’s without doubt a highly nonlinear problem. In this section only small relative dis-

placements are thoroughly discussed as the data available is believed to only represents this part of the

problem. The problem with forces big enough to close the glitch between stringer and cross girder should

be subjected to further investigation as this is the problem faced with when the bridge is subjected to

train loads.
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8 Concluding remarks

The main goal of this thesis has been to assess the global dynamic behavior of the Hell Bridge Test Arena

and further investigation of a known damage to find new, simple damage identification techniques. The

dynamic behavior has been assessed by two numerical models, one beam and one shell model, and from

modal analysis of full-scale measurements. The known damage in the connection between stringer and

cross girder has been investigated by local measurements of imposed vibrations which further has been

used as a foundation to implement the damage in the numerical models.

The results show that for the purpose of extracting the natural frequencies and mode shape estimates

of the Hell Bridge Test Arena, the use of the simple frequency domain techniques Peak Picking and

Frequency Domain Decomposition is sufficient. Further the results show that mode shapes and natural

frequencies found from eigenvalue analysis of both numerical models fit the ones obtained from modal

analysis good. As neither of the numerical models stick out as more accurate than the other and

establishing the beam model was found much less troublesome than the shell model, it is concluded that

for the purpose of this paper, a simple beam model is the better choice of the two.

In the study of damage identification techniques from the bridge deck it was found that all three

time domain techniques introduced, moving standard deviation, cross correlation and normalization are

feasible for indicating damage. Application of them can be used to confirm the presence of damage

and strengthen the decision for selecting areas that should be subjected to further investigation. The

frequency domain technique, establishing the FRF, on the other hand does not work even with a good

understanding of both global and local dynamic behavior of the bridge. Its concluded that to be able

to find indication of damage in the frequency domain, more advanced techniques should be applied.

Numerical tests to evaluate the effect of the known damage on the global dynamic response showed that

the observed damage is too small to have any effect on the 14 first natural frequencies presented in this

paper. As the stringers are a vital structural part in the load distribution process, this does not mean

that the observed damage is not serious, it only implies that from studying global natural frequencies

alone, indication of this type of damage will not be found.

Attempts were made to implement the know damage in both numerical models, but was only success-

fully done so in the beam model. The damaged structural component was represented by removing

constraints, allowing the stringer to act like a cantilever, and further three different connections be-

tween stringer and cross girder were modelled; no spring, linear spring and non-linear spring. The

results obtained proved to be highly dependent on the choice of numerical damping, providing a source

of error that should be subjected to further investigation. By comparing results obtained from the

different damage identification techniques of the numerical simulations and the full-scale measurements,

the method with no spring, i.e. no contact between stringer and cross girder, provided the best results,

giving a good representation.

Finally, the experimental data induced by a modal hammer introduces much lower forces than the ones

from a train passage. The result of this is believed to introduce a completely different problem when it

comes to representing the damage numerically. For smaller forces it is shown that the stringer of the

damaged structural component behaves similar to a cantilever, but for bigger forces, the glitch between

stringer and L-profile will close, giving the stringer vertical support at both ends. These two problems
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are both relevant and very different, so attempts to replicate the latter should be subjected to further

work.
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9 Further work

This thesis has been a challenging and very interesting study. Through the process, many obstacles

requiring serious brainstorming have occurred. Some of the ideas have been implemented, but many of

them had to be laid aside because of the need to limit the extent and scope of this thesis, and also by

the lack of time. This has led to a number of suggestions for possible further work:

• In this thesis, we have only looked at vertical response for the damaged structural component.

Expand this to look at the response in all directions to see if it’s possible to see the damage in the

other directions also.

• Investigate the known damage for loads big enough to close the glitch between stringer an L-profile

connected to the cross girder. This could be possible with a shaker, which is ordered and should

arrive at the Hell Bridge Test Arena before 2019..

• Further investigate of the techniques for damage identification presented in this paper to further

established them as reliable techniques. This can be done by introducing a different set up for

accelerometers and impact locations.

• Investigate other methods for performing bridge inspection. This can be done by introducing other

excitation sources such as the shaker.

• Implement more advanced techniques for modal analysis to establish good damping estimates

for the structure. Use these results in combination with more advanced damping models in the

numerical models too assign more appropriate damping ratios.

• Implement more advanced frequency domain techniques for damage identification.

• Investigate the effects of the simplifications made in the numerical models on local vibrations by

constructing a shell model with high detail level of connection joints between stringer and cross

girder.

• Further investigate the friction contact pair formulation and other methods to represent the dam-

age numerically. A possible approach would be to model the cross girder where the damaged

structural component attaches/ should attach with 3D solid elements.
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A Appendix A - Modal analysis

A.1 Modes beam model

(1) Mode 1, 3.14 Hz (2) Mode 2, 6.11 Hz (3) Mode 3, 7.19 Hz

(4) Mode 4, 7.66 Hz (5) Mode 5, 6.83 Hz (6) Mode 6, 8.27 Hz

(7) Mode 7, 8.84 Hz (8) Mode 8, 10.28 Hz (9) Mode 9, 13.50 Hz

(10) Mode 10, 15.26 Hz (11) Mode 11, 17.45 Hz (12) Mode 12, 17.22 Hz
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(13) Mode 13, 23.85 Hz (14) Mode 14, 25.34 Hz
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A.2 Modes shell model

(1) Mode 1, 3.20 Hz (2) Mode 2, 6.35 Hz (3) Mode 3, 7.07 Hz

(4) Mode 4, 7.69 Hz (5) Mode 5, 6.75 Hz (6) Mode 6, 8.50 Hz

(7) Mode 7, 9.15 Hz (8) Mode 8, 10.66 Hz (9) Mode 9, 12.45 Hz

(10) Mode 10, 14.04 Hz (11) Mode 11, 17.76 Hz (12) Mode 12, 17.71 Hz
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(13) Mode 13, 24.25 Hz (14) Mode 14, 24.53 Hz
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B Appendix B - Matlab scripts

B.1 Peak picking

c l c

c l e a r a l l

c l o s e a l l

% 1 . Bruke he l e t i d s s e r i e n

% 2 . S t a r t e r t i d s s e r i e n noen sekunder f o r toge t kommer t i l broa og l a r den

% gaa en de l sekunder e t t e r toge t har p a s s e r t .

% 3 . S t a r t e r t i d s s e r i e n i det toge t kommer t i l broa og a v s l u t t e r saa f o r t

% aks e l e r omete r e t er t i l b a k e t i l normale v e r d i e r .

% 4 . S t a r t e r t i d s s e r i e n r e t t e t t e r toge t har p a s s e r t broa og a v s l u t t e r en

% l i t e n stund e t t e r a k s e l l e r om et e r e ne v i s e r nromale v e r d i e r i g j e n .

% 5 . T i d s s e r i e f r a mellom togpas s e r i nge r , dvs naar akse l e romete rene v i s e r

% ”normale v e r i d e r .

% 6 . Tar ut a l l e i a l t e r n a t i v 3 og l e g g e r de sammen t i l en ny t i d s s e r i e

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

%%%%% Change these paramaters %%%%%%%

Record = 1 ; %Record , s ee below .

PassingNr = 1 ; %Train passage nr . wanted

Nwelch = 0 ; %number o f d i v i s i o n s , s e t to zero to use autova lues

a l t = 5 ; %Al t e rna t i v e 1 i f whole a c c e l e r a t i o n f i l e should be

%used , se top o f s c r i p t f o r more i n f o

AccStart = 5 ; %Star t acce l e romete r to look at

AccStop = 5 ; %End acce l e romete r

AccStep = 1 ; %Step acce l e romete r

FreqPlotStart =0.1 ; %Def ines s t a r t o f x a x i s in p l o t

FreqPlotEnd =30; %Def ines end o f x a x i s in p l o t

PlotFreq =0; %End o f f requency value to mark peaks

MinPeakDist = 3 ; %Minimum d i s t anc e between peaks

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

i f Record == 1

recname=’2016−09−07−09−15−54.mat ’ ;

e l s e i f Record == 2

recname=’2016−09−07−11−04−18.mat ’ ;

e l s e i f Record == 3

recname=’2016−09−08−10−05−42.mat ’ ;

e l s e i f Record == 4

recname=’2016−09−08−12−13−06.mat ’ ;

end
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load ( recname ) ;

nt=length ( ConvertedData . Data . MeasuredData ( 2 ) . Data ) ; %number o f samples in

%the measurement s e r i e s

dt =1/400; %sample ra t e i s 400 Hz

t =0: dt : dt ∗( nt−1); %c r e a t e the cor re spond ing time vec to r

T=t ( end ) ;

%D i r e c t i o n s as in Abaqus model !

a c c e l e r omet e r s =[33 32 34 ; 36 35 37 ; 39 38 40 ; 42 41 43 ; 45 44 4 6 ; . . .

48 47 49 ; 1 0 2 ;

4 3 5 ; 7 6 8 ; 10 9 11 ; 13 12 14 ; 51 50 52 ; 54 53 55 ; 57 56 5 8 ; . . .

60 59 61 ;

16 15 17 ; 19 18 20 ; 22 21 23 ; 25 24 26 ; 28 27 2 9 ] ;

a c c e l e r omet e r s = acce l e r omete r s + 2 ;

A = [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 9 ] ;

AccStart = AccStart + 1 ;

AccStop = AccStop + 1 ;

i f a l t == 1

e l s e

i f recname == ’2016−09−07−09−15−54.mat ’

i f a l t == 2

plotTime =[1540 1700;2450 2650 ; 4100 4400 ; 5275 5 4 0 0 ] ; %2.

e l s e i f a l t == 3

plotTime = [1576 1592 ; 2527 2543 ; 4210 4270 ; 5316 5 3 3 2 ] ; %3.

e l s e i f a l t == 4

plotTime =[1582 1700;2532 2650 ; 4250 4400 ; 5321 5 4 2 0 ] ; %4.

e l s e i f a l t == 5

plotTime =[1 100;1900 2200 ; 2800 4000 ; 4600 5 0 0 0 ] ; %5.

e l s e i f a l t == 6

plotTime = [1576 1592 ; 2527 2543 ; 4210 4270 ; 5316 5 3 3 2 ] ; %6.

end

e l s e i f recname == ’2016−09−07−11−04−18.mat ’

i f a l t == 2

plotTime =[460 660 ; 2420 2620 ; 3120 3320 ; 5320 5 5 2 0 ; . . .

5900 6100 ; 6650 6 8 5 0 ] ; %2.

e l s e i f a l t == 3

plotTime = [530 550 ; 2476 2492 ; 3178 3192 ; 5391 5 4 1 0 ; . . .

5955 5972 ; 6694 6 7 1 0 ] ; %3.

e l s e i f a l t == 4

e l s e i f a l t == 5

plotTime =[1 350 ; 800 2200 ; 2800 3000 ; 3500 5 2 0 0 ; . . .

5650 5800 ; 6200 6 5 0 0 ] ; %5.

e l s e i f a l t == 6

plotTime = [530 550 ; 2476 2492 ; 3178 3192 ; 5391 5 4 1 0 ; . . .
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5955 5972 ; 6694 6 7 1 0 ] ; %6.

end

e l s e i f recname == ’2016−09−08−10−05−42.mat ’

e l s e i f recname == ’2016−09−08−12−13−06.mat ’

i f a l t == 2

plotTime =[1750 1950 ; 2480 2680 ; 5200 5400 ; 6020 6 2 2 0 ; . . .

6750 6 9 5 0 ] ; %2.

e l s e i f a l t == 3

plotTime =[1802 1818 ; 2536 2552 ; 5272 5290 ; 6075 6 0 9 5 ; . . .

6815 6 8 3 5 ] ; %3.

e l s e i f a l t == 4

e l s e i f a l t == 5

plotTime =[1 1600 ; 2100 2300 ; 2800 5000 ; 5550 5 9 0 0 ; . . .

6400 6 6 0 0 ] ; %5.

e l s e i f a l t == 6

plotTime =[1802 1818 ; 2536 2552 ; 5272 5290 ; 6075 6 0 9 5 ; . . .

6815 6 8 3 5 ] ; %6.

end

end

end

i f a l t == 1

%nothing

e l s e

tTemp = plotTime ( PassingNr , 1 ) : dt : plotTime ( PassingNr , 2 ) ;

end

i f Nwelch == 0

%nothing

e l s e i f a l t == 6

%nothing

e l s e

i f a l t == 1

Nwindow=round ( l ength ( t )/ Nwelch ) ; %length o f window

n f f t =2ˆnextpow2 (Nwindow ) ; %number o f FFT po in t s

e l s e

Nwindow=round ( l ength (tTemp)/ Nwelch ) ; %length o f window

n f f t =2ˆnextpow2 (Nwindow ) ; %number o f FFT po in t s

end

end

f o r i = AccStart : AccStep : AccStop

x=ConvertedData . Data . MeasuredData ( a c c e l e r omet e r s ( i , 1 ) ) . Data ;

y=ConvertedData . Data . MeasuredData ( a c c e l e r omet e r s ( i , 2 ) ) . Data ;
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z=ConvertedData . Data . MeasuredData ( a c c e l e r omet e r s ( i , 3 ) ) . Data ;

x=x−mean( x ) ;

y=y−mean( y ) ;

z=z−mean( z ) ;

i f a l t == 1

i f Nwelch == 0

[ Pxx , fx ] = pwelch (x , [ ] , [ ] , [ ] , 4 0 0 ) ;

[ Pyy , fy ] = pwelch (y , [ ] , [ ] , [ ] , 4 0 0 ) ;

[ Pzz , f z ] = pwelch ( z , [ ] , [ ] , [ ] , 4 0 0 ) ;

% f i g u r e ( )

% spectrogram ( z , [ ] , [ ] , [ ] , 4 0 0 , ’ yaxis ’ )

e l s e

[ Pxx , fx ] = pwelch (x , hanning (Nwindow ) , [ ] , n f f t , 4 0 0 ) ;

[ Pyy , fy ] = pwelch (y , hanning (Nwindow ) , [ ] , n f f t , 4 0 0 ) ;

[ Pzz , f z ] = pwelch ( z , hanning (Nwindow ) , [ ] , n f f t , 4 0 0 ) ;

% f i g u r e ( )

% spectrogram ( z , hanning (Nwindow ) , [ ] , n f f t , 4 0 0 , ’ yaxis ’ )

end

%Find peaks x

[ pk x , l k x ] = f indpeaks (Pxx , fx , ’ MinPeakDistance ’ , MinPeakDist ) ;

f r e q x=ze ro s ( l ength ( l k x ) , 1 ) ;

va l x = l k x ( 1 , 1 ) ;

count x = 0 ;

whi l e va l x<PlotFreq

count x = count x +1;

f r e q x ( count x , 1 ) = l k x ( count x , 1 ) ;

va l x = l k x ( count x +1 ,1) ;

end

%Plot natura l f r e q u e n c i e s in p l o t

f r e q x ( count x +1: l ength ( l k x ) ) = [ ] ;

pk x ( count x +1: l ength ( l k x ) ) = [ ] ;

l k x ( count x +1: l ength ( l k x ) ) = [ ] ;

f r e q 1 x =f r e q x ;

f r e q x = num2str ( f r e q x ) ;

%Find peaks y

[ pk y , l k y ] = f indpeaks (Pyy , fy , ’ MinPeakDistance ’ , MinPeakDist ) ;

f r e q y=ze ro s ( l ength ( l k y ) , 1 ) ;

va l y = l k y ( 1 , 1 ) ;

count y = 0 ;

whi l e va l y<PlotFreq

count y = count y +1;

f r e q y ( count y , 1 ) = l k y ( count y , 1 ) ;

va l y = l k y ( count y +1 ,1) ;

end

%Plot natura l f r e q u e n c i e s in p l o t
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f r e q y ( count y +1: l ength ( l k y ) ) = [ ] ;

pk y ( count y +1: l ength ( l k y ) ) = [ ] ;

l k y ( count y +1: l ength ( l k y ) ) = [ ] ;

f r e q 1 y =f r e q y ;

f r e q y = num2str ( f r e q y ) ;

%Find peaks z

[ pk z , l k z ] = f indpeaks ( Pzz , fz , ’ MinPeakDistance ’ , MinPeakDist ) ;

f r e q z=ze ro s ( l ength ( l k z ) , 1 ) ;

v a l z = l k z ( 1 , 1 ) ;

count z = 0 ;

whi l e va l z<PlotFreq

count z = count z +1;

f r e q z ( count z , 1 ) = l k z ( count z , 1 ) ;

v a l z = l k z ( count z +1 ,1) ;

end

%Plot natura l f r e q u e n c i e s in p l o t

f r e q z ( count z +1: l ength ( l k z ) ) = [ ] ;

pk z ( count z +1: l ength ( l k z ) ) = [ ] ;

l k z ( count z +1: l ength ( l k z ) ) = [ ] ;

f r e q 1 z =f r e q z ;

f r e q z = num2str ( f r e q z ) ;

% Plot spectrum

f i g u r e ( ) ; g r id on ; hold on ;

s e t ( gcf , ’ co lo r ’ , ’w ’ ) ;

box on

p lo t ( fx , Pxx ) ;

x l a b e l ( ’ f [ Hz ] ’ ) ; y l a b e l ( ’ Spe c t r a l dens i ty [ (m/ s ˆ2)ˆ2/(1/ s ) ] ’ ) ;

t i t l e ( [ num2str ( recname ) ’ A’ num2str (A(1 , i ) ) ’−x ’ ] ) ;

xl im ( [ FreqPlotStart FreqPlotEnd ] )

p l o t ( lk x , pk x , ’ o ’ )

t ex t ( lk x , pk x , f r eq x , ’ HorizontalAl ignment ’ , ’ l e f t ’ ) ;

f i g u r e ( ) ; g r id on ; hold on ;

s e t ( gcf , ’ co lo r ’ , ’w ’ ) ;

box on

p lo t ( fy , Pyy ) ;

x l a b e l ( ’ f [ Hz ] ’ ) ; y l a b e l ( ’ Spe c t r a l dens i ty [ (m/ s ˆ2)ˆ2/(1/ s ) ] ’ ) ;

t i t l e ( [ num2str ( recname ) ’ A’ num2str (A(1 , i ) ) ’−y ’ ] ) ;

xl im ( [ FreqPlotStart FreqPlotEnd ] )

p l o t ( lk y , pk y , ’ o ’ )

t ex t ( lk y , pk y , f r eq y , ’ HorizontalAl ignment ’ , ’ l e f t ’ ) ;

f i g u r e ( ) ; g r id on ; hold on ;

s e t ( gcf , ’ co lo r ’ , ’w ’ ) ;

box on
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p lo t ( fz , Pzz ) ;

x l a b e l ( ’ f [ Hz ] ’ ) ; y l a b e l ( ’ Spe c t r a l dens i ty [ (m/ s ˆ2)ˆ2/(1/ s ) ] ’ ) ;

t i t l e ( [ num2str ( recname ) ’ A’ num2str (A(1 , i ) ) ’−z ’ ] ) ;

xl im ( [ FreqPlotStart FreqPlotEnd ] )

p l o t ( l k z , pk z , ’ o ’ )

t ex t ( l k z , pk z , f r e q z , ’ HorizontalAl ignment ’ , ’ l e f t ’ ) ;

e l s e i f a l t == 6

xTemp = x ( plotTime (1 , 1 )∗4 00 : plotTime ( 1 , 2 )∗4 0 0 ) ;

yTemp = y ( plotTime (1 , 1 )∗4 00 : plotTime ( 1 , 2 )∗4 0 0 ) ;

zTemp = z ( plotTime (1 , 1 )∗4 00 : plotTime ( 1 , 2 )∗4 0 0 ) ;

f o r k = 2 : l ength ( plotTime )

xT = x ( plotTime (k , 1 ) ∗ 4 0 0 : plotTime (k , 2 ) ∗ 4 0 0 ) ;

yT = y ( plotTime (k , 1 ) ∗ 4 0 0 : plotTime (k , 2 ) ∗ 4 0 0 ) ;

zT = z ( plotTime (k , 1 ) ∗ 4 0 0 : plotTime (k , 2 ) ∗ 4 0 0 ) ;

xTemp = [ xTemp ; xT ] ;

yTemp = [ yTemp ; yT ] ;

zTemp = [ zTemp ; zT ] ;

end

i f Nwelch == 0

%nothing

e l s e

Nwindow=round ( l ength (xTemp)/ Nwelch ) ; %length o f window

n f f t =2ˆnextpow2 (Nwindow ) ; %number o f FFT po in t s

end

i f Nwelch == 0

[ Pxxtemp , fxtemp ] = pwelch (xTemp , [ ] , [ ] , [ ] , 4 0 0 ) ;

[ Pyytemp , fytemp ] = pwelch (yTemp , [ ] , [ ] , [ ] , 4 0 0 ) ;

[ Pzztemp , fztemp ] = pwelch (zTemp , [ ] , [ ] , [ ] , 4 0 0 ) ;

e l s e

[ Pxxtemp , fxtemp ] = pwelch (xTemp , hanning (Nwindow ) , [ ] , n f f t , 4 0 0 ) ;

[ Pyytemp , fytemp ] = pwelch (yTemp , hanning (Nwindow ) , [ ] , n f f t , 4 0 0 ) ;

[ Pzztemp , fztemp ] = pwelch (zTemp , hanning (Nwindow ) , [ ] , n f f t , 4 0 0 ) ;

end

%Find peaks xTemp

[ pk x , l k x ] = f indpeaks (Pxxtemp , fxtemp , ’ MinPeakDistance ’ , . . .

MinPeakDist ) ;

f r e q x=ze ro s ( l ength ( l k x ) , 1 ) ;

va l x = l k x ( 1 , 1 ) ;

count x = 0 ;

whi l e va l x<PlotFreq

count x = count x +1;
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f r e q x ( count x , 1 ) = l k x ( count x , 1 ) ;

va l x = l k x ( count x +1 ,1) ;

end

%Plot natura l f r e q u e n c i e s in p l o t

f r e q x ( count x +1: l ength ( l k x ) ) = [ ] ;

pk x ( count x +1: l ength ( l k x ) ) = [ ] ;

l k x ( count x +1: l ength ( l k x ) ) = [ ] ;

f r e q 1 x =f r e q x ;

f r e q x = num2str ( f r e q x ) ;

%Find peaks yTemp

[ pk y , l k y ] = f indpeaks (Pyytemp , fytemp , ’ MinPeakDistance ’ , . . .

MinPeakDist ) ;

f r e q y=ze ro s ( l ength ( l k y ) , 1 ) ;

va l y = l k y ( 1 , 1 ) ;

count y = 0 ;

whi l e va l y<PlotFreq

count y = count y +1;

f r e q y ( count y , 1 ) = l k y ( count y , 1 ) ;

va l y = l k y ( count y +1 ,1) ;

end

%Plot natura l f r e q u e n c i e s in p l o t

f r e q y ( count y +1: l ength ( l k y ) ) = [ ] ;

pk y ( count y +1: l ength ( l k y ) ) = [ ] ;

l k y ( count y +1: l ength ( l k y ) ) = [ ] ;

f r e q 1 y =f r e q y ;

f r e q y = num2str ( f r e q y ) ;

%Find peaks zTemp

[ pk z , l k z ] = f indpeaks ( Pzztemp , fztemp , ’ MinPeakDistance ’ , . . .

MinPeakDist ) ;

f r e q z=ze ro s ( l ength ( l k z ) , 1 ) ;

v a l z = l k z ( 1 , 1 ) ;

count z = 0 ;

whi l e va l z<PlotFreq

count z = count z +1;

f r e q z ( count z , 1 ) = l k z ( count z , 1 ) ;

v a l z = l k z ( count z +1 ,1) ;

end

%Plot natura l f r e q u e n c i e s in p l o t

f r e q z ( count z +1: l ength ( l k z ) ) = [ ] ;

pk z ( count z +1: l ength ( l k z ) ) = [ ] ;

l k z ( count z +1: l ength ( l k z ) ) = [ ] ;

f r e q 1 z =f r e q z ;

f r e q z = num2str ( f r e q z ) ;

i f Nwelch == 0
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f i g u r e ( ) ; g r id on ; hold on ;

s e t ( gcf , ’ co lo r ’ , ’w ’ ) ;

box on

p lo t ( fxtemp , Pxxtemp ) ;

x l a b e l ( ’ f [ Hz ] ’ ) ; y l a b e l ( ’ Spe c t r a l dens i ty [ (m/ s ˆ2)ˆ2/(1/ s ) ] ’ ) ;

t i t l e ( [ num2str ( recname ) ’ . A’ num2str (A(1 , i ) ) ’−x . ’ ] ) ;

xl im ( [ FreqPlotStart FreqPlotEnd ] )

p l o t ( lk x , pk x , ’ o ’ )

t ex t ( lk x , pk x , f r eq x , ’ HorizontalAl ignment ’ , ’ l e f t ’ ) ;

f i g u r e ( ) ; g r id on ; hold on ;

s e t ( gcf , ’ co lo r ’ , ’w ’ ) ;

box on

p lo t ( fytemp , Pyytemp ) ;

x l a b e l ( ’ f [ Hz ] ’ ) ; y l a b e l ( ’ Spe c t r a l dens i ty [ (m/ s ˆ2)ˆ2/(1/ s ) ] ’ ) ;

t i t l e ( [ num2str ( recname ) ’ . A’ num2str (A(1 , i ) ) ’−y . ’ ] ) ;

xl im ( [ FreqPlotStart FreqPlotEnd ] )

p l o t ( lk y , pk y , ’ o ’ )

t ex t ( lk y , pk y , f r eq y , ’ HorizontalAl ignment ’ , ’ l e f t ’ ) ;

f i g u r e ( ) ; g r id on ; hold on ;

s e t ( gcf , ’ co lo r ’ , ’w ’ ) ;

box on

p lo t ( fztemp , Pzztemp ) ;

x l a b e l ( ’ f [ Hz ] ’ ) ; y l a b e l ( ’ Spe c t r a l dens i ty [ (m/ s ˆ2)ˆ2/(1/ s ) ] ’ ) ;

t i t l e ( [ num2str ( recname ) ’ . A’ num2str (A(1 , i ) ) ’−z . ’ ] ) ;

xl im ( [ FreqPlotStart FreqPlotEnd ] )

p l o t ( l k z , pk z , ’ o ’ )

t ex t ( l k z , pk z , f r e q z , ’ HorizontalAl ignment ’ , ’ l e f t ’ ) ;

e l s e

f i g u r e ( ) ; g r id on ; hold on ;

s e t ( gcf , ’ co lo r ’ , ’w ’ ) ;

box on

p lo t ( fxtemp , Pxxtemp ) ;

x l a b e l ( ’ f [ Hz ] ’ ) ; y l a b e l ( ’ Spe c t r a l dens i ty [ (m/ s ˆ2)ˆ2/(1/ s ) ] ’ ) ;

t i t l e ( [ num2str ( recname ) ’ . A’ num2str (A(1 , i ) ) ’−x . ’ . . .

’ Nwelch=’ num2str ( Nwelch ) ] ) ;

xl im ( [ FreqPlotStart FreqPlotEnd ] )

p l o t ( lk x , pk x , ’ o ’ )

t ex t ( lk x , pk x , f r eq x , ’ HorizontalAl ignment ’ , ’ l e f t ’ ) ;

f i g u r e ( ) ; g r id on ; hold on ;

s e t ( gcf , ’ co lo r ’ , ’w ’ ) ;

box on

p lo t ( fytemp , Pyytemp ) ;

x l a b e l ( ’ f [ Hz ] ’ ) ; y l a b e l ( ’ Spe c t r a l dens i ty [ (m/ s ˆ2)ˆ2/(1/ s ) ] ’ ) ;

t i t l e ( [ num2str ( recname ) ’ . A’ num2str (A(1 , i ) ) ’−y . ’ . . .
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’ Nwelch=’ num2str ( Nwelch ) ] ) ;

xl im ( [ FreqPlotStart FreqPlotEnd ] )

p l o t ( lk y , pk y , ’ o ’ )

t ex t ( lk y , pk y , f r eq y , ’ HorizontalAl ignment ’ , ’ l e f t ’ ) ;

f i g u r e ( ) ; g r id on ; hold on ;

s e t ( gcf , ’ co lo r ’ , ’w ’ ) ;

box on

p lo t ( fztemp , Pzztemp ) ;

x l a b e l ( ’ f [ Hz ] ’ ) ; y l a b e l ( ’ Spe c t r a l dens i ty [ (m/ s ˆ2)ˆ2/(1/ s ) ] ’ ) ;

t i t l e ( [ num2str ( recname ) ’ . A’ num2str (A(1 , i ) ) ’−z . ’ . . .

’ Nwelch=’ num2str ( Nwelch ) ] ) ;

xl im ( [ FreqPlotStart FreqPlotEnd ] )

p l o t ( l k z , pk z , ’ o ’ )

t ex t ( l k z , pk z , f r e q z , ’ HorizontalAl ignment ’ , ’ l e f t ’ ) ;

end

% tTemp = 0 : dt : dt ∗( l ength (xTemp)−1);

% f i g u r e ( )

% p lo t (tTemp , zTemp , ’ b ’ ) ;

% x l a b e l ( ’ Time [ s ] ’ ) ; y l a b e l ( ’ Acc . [ g ] ’ ) ;

% t i t l e ( [ num2str ( recname ) ’ . A’ num2str (A(1 , i ) ) ’−z . ’ ] ) ;

e l s e

xTemp = x ( plotTime ( PassingNr , 1 ) ∗ 4 0 0 : plotTime ( PassingNr , 2 ) ∗ 4 0 0 ) ;

yTemp = y ( plotTime ( PassingNr , 1 ) ∗ 4 0 0 : plotTime ( PassingNr , 2 ) ∗ 4 0 0 ) ;

zTemp = z ( plotTime ( PassingNr , 1 ) ∗ 4 0 0 : plotTime ( PassingNr , 2 ) ∗ 4 0 0 ) ;

i f Nwelch == 0

[ Pxxtemp , fxtemp ] = pwelch (xTemp , [ ] , [ ] , [ ] , 4 0 0 ) ;

[ Pyytemp , fytemp ] = pwelch (yTemp , [ ] , [ ] , [ ] , 4 0 0 ) ;

[ Pzztemp , fztemp ] = pwelch (zTemp , [ ] , [ ] , [ ] , 4 0 0 ) ;

% f i g u r e ( )

% spectrogram (zTemp , [ ] , [ ] , [ ] , 4 0 0 , ’ yaxis ’ )

e l s e

[ Pxxtemp , fxtemp ] = pwelch (xTemp , hanning (Nwindow ) , [ ] , n f f t , 4 0 0 ) ;

[ Pyytemp , fytemp ] = pwelch (yTemp , hanning (Nwindow ) , [ ] , n f f t , 4 0 0 ) ;

[ Pzztemp , fztemp ] = pwelch (zTemp , hanning (Nwindow ) , [ ] , n f f t , 4 0 0 ) ;

% f i g u r e ( )

% spectrogram (zTemp , hanning (Nwindow ) , [ ] , n f f t , 4 0 0 , ’ yaxis ’ )

end

%Find peaks xTemp

[ pk x , l k x ] = f indpeaks (Pxxtemp , fxtemp , ’ MinPeakDistance ’ , . . .

MinPeakDist ) ;

f r e q x=ze ro s ( l ength ( l k x ) , 1 ) ;

va l x = l k x ( 1 , 1 ) ;

count x = 0 ;

whi l e va l x<PlotFreq
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count x = count x +1;

f r e q x ( count x , 1 ) = l k x ( count x , 1 ) ;

va l x = l k x ( count x +1 ,1) ;

end

%Plot natura l f r e q u e n c i e s in p l o t

f r e q x ( count x +1: l ength ( l k x ) ) = [ ] ;

pk x ( count x +1: l ength ( l k x ) ) = [ ] ;

l k x ( count x +1: l ength ( l k x ) ) = [ ] ;

f r e q 1 x =f r e q x ;

f r e q x = num2str ( f r e q x ) ;

%Find peaks yTemp

[ pk y , l k y ] = f indpeaks ( ( Pyytemp ) , fytemp , ’ MinPeakDistance ’ , . . .

MinPeakDist ) ;

f r e q y=ze ro s ( l ength ( l k y ) , 1 ) ;

va l y = l k y ( 1 , 1 ) ;

count y = 0 ;

whi l e va l y<PlotFreq

count y = count y +1;

f r e q y ( count y , 1 ) = l k y ( count y , 1 ) ;

va l y = l k y ( count y +1 ,1) ;

end

%Plot natura l f r e q u e n c i e s in p l o t

f r e q y ( count y +1: l ength ( l k y ) ) = [ ] ;

pk y ( count y +1: l ength ( l k y ) ) = [ ] ;

l k y ( count y +1: l ength ( l k y ) ) = [ ] ;

f r e q 1 y =f r e q y ;

f r e q y = num2str ( f r e q y ) ;

%Find peaks zTemp

[ pk z , l k z ] = f indpeaks ( ( Pzztemp ) , fztemp , ’ MinPeakDistance ’ , . . .

MinPeakDist ) ;

f r e q z=ze ro s ( l ength ( l k z ) , 1 ) ;

v a l z = l k z ( 1 , 1 ) ;

count z = 0 ;

whi l e va l z<PlotFreq

count z = count z +1;

f r e q z ( count z , 1 ) = l k z ( count z , 1 ) ;

v a l z = l k z ( count z +1 ,1) ;

end

%Plot natura l f r e q u e n c i e s in p l o t

f r e q z ( count z +1: l ength ( l k z ) ) = [ ] ;

pk z ( count z +1: l ength ( l k z ) ) = [ ] ;

l k z ( count z +1: l ength ( l k z ) ) = [ ] ;

f r e q 1 z =f r e q z ;

f r e q z = num2str ( f r e q z ) ;
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i f Nwelch == 0

f i g u r e ( ) ; g r id on ; hold on ;

p l o t ( fxtemp , Pxxtemp ) ;

s e t ( gcf , ’ co lo r ’ , ’w ’ ) ;

box on

x l a b e l ( ’ f [ Hz ] ’ ) ; y l a b e l ( ’ Spe c t r a l dens i ty [ (m/ s ˆ2)ˆ2/(1/ s ) ] ’ ) ;

t i t l e ( [ num2str ( recname ) ’ . A’ num2str (A(1 , i ) ) ’−x . ’ . . .

’ Pass ing nr : ’ num2str ( PassingNr ) ] ) ;

xl im ( [ FreqPlotStart FreqPlotEnd ] )

p l o t ( lk x , pk x , ’ o ’ )

t ex t ( lk x , pk x , f r eq x , ’ HorizontalAl ignment ’ , ’ l e f t ’ ) ;

f i g u r e ( ) ; g r id on ; hold on ;

s e t ( gcf , ’ co lo r ’ , ’w ’ ) ;

box on

p lo t ( fytemp , ( Pyytemp ) ) ;

x l a b e l ( ’ f [ Hz ] ’ ) ; y l a b e l ( ’ Spe c t r a l dens i ty [ (m/ s ˆ2)ˆ2/(1/ s ) ] ’ ) ;

t i t l e ( [ num2str ( recname ) ’ . A’ num2str (A(1 , i ) ) ’−y . ’ . . .

’ Pass ing nr : ’ num2str ( PassingNr ) ] ) ;

xl im ( [ FreqPlotStart FreqPlotEnd ] )

p l o t ( lk y , pk y , ’ o ’ )

t ex t ( lk y , pk y , f r eq y , ’ HorizontalAl ignment ’ , ’ l e f t ’ ) ;

f i g u r e ( ) ; g r id on ; hold on ;

s e t ( gcf , ’ co lo r ’ , ’w ’ ) ;

box on

p lo t ( fztemp , ( Pzztemp ) ) ;

x l a b e l ( ’ f [ Hz ] ’ ) ; y l a b e l ( ’ Spe c t r a l dens i ty [ (m/ s ˆ2)ˆ2/(1/ s ) ] ’ ) ;

t i t l e ( [ num2str ( recname ) ’ . A’ num2str (A(1 , i ) ) ’−z . ’ . . .

’ Pass ing nr : ’ num2str ( PassingNr ) ] ) ;

xl im ( [ FreqPlotStart FreqPlotEnd ] )

p l o t ( l k z , pk z , ’ o ’ )

t ex t ( l k z , pk z , f r e q z , ’ HorizontalAl ignment ’ , ’ l e f t ’ ) ;

f i g u r e ( ) ; hold on ;

s e t ( gcf , ’ co lo r ’ , ’w ’ ) ;

box on

subplot ( 1 , 2 , 1 )

p l o t ( fztemp , ( Pzztemp ) , ’ k ’ ) ;

x l a b e l ( ’ f [ Hz ] ’ ) ; y l a b e l ( ’ Spe c t r a l dens i ty ’ ) ;

t i t l e ( [ ’ Transver sa l acce l e romete r A0 ’ num2str (A(1 , i ) ) ] ) ;

xl im ( [ FreqPlotStart FreqPlotEnd ] )

p l o t ( l k z , pk z , ’ o ’ )

t ex t ( l k z , pk z , f r e q z , ’ HorizontalAl ignment ’ , ’ l e f t ’ ) ;
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subplot ( 1 , 2 , 2 )

p l o t ( fytemp , ( Pyytemp ) , ’ k ’ ) ;

x l a b e l ( ’ f [ Hz ] ’ ) ; y l a b e l ( ’ Spe c t r a l dens i ty ’ ) ;

t i t l e ( [ ’ V e r t i c a l a cce l e romete r A0 ’ num2str (A(1 , i ) ) ] ) ;

xl im ( [ FreqPlotStart FreqPlotEnd ] )

p l o t ( lk y , pk y , ’ o ’ )

t ex t ( lk y , pk y , f r eq y , ’ HorizontalAl ignment ’ , ’ l e f t ’ ) ;

e l s e

f i g u r e ( ) ; g r id on ; hold on ;

s e t ( gcf , ’ co lo r ’ , ’w ’ ) ;

box on

p lo t ( fxtemp , Pxxtemp ) ;

x l a b e l ( ’ f [ Hz ] ’ ) ; y l a b e l ( ’ Spe c t r a l dens i ty [ (m/ s ˆ2)ˆ2/(1/ s ) ] ’ ) ;

t i t l e ( [ num2str ( recname ) ’ . A’ num2str (A(1 , i ) ) ’−x . ’ . . .

’ Pass ing nr : ’ num2str ( PassingNr ) . . .

’ . Nwelch=’ num2str ( Nwelch ) ] ) ;

xl im ( [ FreqPlotStart FreqPlotEnd ] )

p l o t ( lk x , pk x , ’ o ’ )

t ex t ( lk x , pk x , f r eq x , ’ HorizontalAl ignment ’ , ’ l e f t ’ ) ;

f i g u r e ( ) ; g r id on ; hold on ;

s e t ( gcf , ’ co lo r ’ , ’w ’ ) ;

box on

p lo t ( fytemp , Pyytemp ) ;

x l a b e l ( ’ f [ Hz ] ’ ) ; y l a b e l ( ’ Spe c t r a l dens i ty [ (m/ s ˆ2)ˆ2/(1/ s ) ] ’ ) ;

t i t l e ( [ num2str ( recname ) ’ . A’ num2str (A(1 , i ) ) ’−y . ’ . . .

’ Pass ing nr : ’ num2str ( PassingNr ) . . .

’ . Nwelch=’ num2str ( Nwelch ) ] ) ;

xl im ( [ FreqPlotStart FreqPlotEnd ] )

p l o t ( lk y , pk y , ’ o ’ )

t ex t ( lk y , pk y , f r eq y , ’ HorizontalAl ignment ’ , ’ l e f t ’ ) ;

f i g u r e ( ) ; g r id on ; hold on ;

s e t ( gcf , ’ co lo r ’ , ’w ’ ) ;

box on

p lo t ( fztemp , Pzztemp ) ;

x l a b e l ( ’ f [ Hz ] ’ ) ; y l a b e l ( ’ Spe c t r a l dens i ty [ (m/ s ˆ2)ˆ2/(1/ s ) ] ’ ) ;

t i t l e ( [ num2str ( recname ) ’ . A’ num2str (A(1 , i ) ) ’−z . ’ . . .

’ Pass ing nr : ’ num2str ( PassingNr ) . . .

’ . Nwelch=’ num2str ( Nwelch ) ] ) ;

xl im ( [ FreqPlotStart FreqPlotEnd ] )

p l o t ( l k z , pk z , ’ o ’ )

t ex t ( l k z , pk z , f r e q z , ’ HorizontalAl ignment ’ , ’ l e f t ’ ) ;

end

end

end

102



B.2 Frequency domain decomposition

f unc t i on [ Frq , phi ]=FDD( Input , Fs )

% Frequency Domain Decomposition (FDD) algor i thm f o r modal a n a l y s i s

% This code a l l ows you to manually s e l e c t the peaks by simply drawing a

% r e c t a n g l e around the peaks .

% Programmer : Mohammad Farshchin , Ph .D candidate at The UofM

% Email : Mohammad. Farshchin@gmail . com

% Last modi f i ed : 4/6/2015

% Input : the name o f input f i l e that conta in s time h i s t o r y data

% Fs : sampling f requency

% Frq : i d e n t i f i e d f r e q u e n c i e s

% phi : i d e n t i f i e d mode shapes

% Example :

% For d e t a i l e d in fo rmat ion about t h i s method see : Br incker R, Zhang LM,

%Andersen P. Modal i d e n t i f i c a t i o n from ambient r e sponse s us ing Frequency

%Domain Decomposition . In : Proceed ings o f the 18 th I n t e r n a t i o n a l Modal

%Analys i s Conf . , USA: San Antonio , 2000 .

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% I n i t i a l i z a t i o n

c l o s e a l l

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Import time h i s t o r y data : Processed a c c e l e r e a t i o n data must be

% arranged in a columnwise format ( one column f o r each measurement channel )

% Note that the a c c e l e r a t i o n data must be preproce s s ed

%(detrend , f i l t e r e d e tc . ) .

% Read a c c e l e r a t i o n data from the e x c e l f i l e

Acc=x l s r ead ( Input ) ;

d i s p l ay ( ’FDD i s in progres s , p l e a s e wait . . . ’ )

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Compute Power Spec t r a l Density (PSD) matrix .

% CPSD funct ion , with d e f a u l t s e t t i n g s , i s used to compute the c r o s s power

% s p e c t r a l dens i ty matrix . More s o p h i s t i c a t e d methods can a l s o be

% app l i ed f o r more accuracy .

f o r I =1: s i z e (Acc , 2 )

f o r J=1: s i z e (Acc , 2 )

[PSD( I , J , : ) , F( I , J , : ) ] = cpsd ( Acc ( : , I ) , Acc ( : , J ) , [ ] , [ ] , [ ] , Fs ) ;

end

end

Frequenc ie s ( : , 1 )=F ( 1 , 1 , : ) ;

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Perform Modal Ana lys i s ( Use the I d e n t i f i e r funct ion , below )

[ Frq , phi , Fp , s1 ] = I d e n t i f i e r (PSD, Frequenc ie s ) ;
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% Save r e s u l t s

save ( ’ IdResu l t s . mat ’ , ’ phi ’ , ’ Fp ’ , ’ s1 ’ , ’ Frequencies ’ )

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Print r e s u l t s

d i s p l ay(’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’)

d i s p l ay ( ’ I d e n t i f i c a t i o n Resu l t s ’ )

d i s p l ay(’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’)

% Print f r e q u e n c i e s

d i s p l ay ( ’ I d e n t i f i e d f r e q u e n c i e s ’ )

f o r I =1: s i z e ( Frq , 1 )

f p r i n t f ( ’Mode : %d ; Modal Frequency : %6.4g (Hz)\n ’ , I , Frq ( I ) )

end

% Print Mode shapes

d i s p l ay ( ’ Related mode shapes ’ )

f o r I =1: s i z e ( Frq , 1 )

f p r i n t f ( ’Mode shape # %d :\n\n ’ , I )

d i sp ( phi ( : , I ) )

end

end

%% −−−−−−−−−−−−−−−−−−−−−−−−−−−− sub func t i ons −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f unc t i on [ Frq , phi , Fp , s1 ] = I d e n t i f i e r (PSD,F)

% Compute SVD of the PSD at each f requency

f o r I =1: s i z e (PSD, 3 )

[ u , s , ˜ ] = svd (PSD( : , : , I ) ) ;

s1 ( I ) = s ( 1 ) ; % F i r s t e i gen va lue s

s2 ( I ) = s ( 2 , 2 ) ; % Second e igen va lue s

ms ( : , I )=u ( : , 1 ) ; % Mode shape

end

% Plot f i r s t s i n g u l a r va lue s o f the PSD matrix

f i g u r e

s e t ( gcf , ’ co lo r ’ , ’w ’ ) ;

hold on

p l o t (F , mag2db( s1 ) , ’ k ’ )

box on

x l a b e l ( ’ Frequency (Hz ) ’ )

y l a b e l ( ’ 1 s t S ingu la r va lue s o f the PSD matrix (db ) ’ )

xl im ( [ 0 5 0 ] )

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Peak s e l e c t i o n

% a : Draw r e c t a n g l e s around peaks whi l e ho ld ing l e f t c l i c k

% b : Press ”Space” key to cont inue peak s e l e c t i o n

% c : Press ”any other key” i f you have s e l e c t e d a peak by mistake and want
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% to ignore i t

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Fp=[];% Frequenc ie s r e l a t e d to s e l e c t e d peaks

NumPeaks=input ( ’ Enter the number o f d e s i r e d peaks : ’ ) ;

d i s p l ay(’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’)

d i s p l ay ( ’ Peak s e l e c t i o n procedure ’ )

d i s p l ay ( ’ a : Draw r e c t a n g l e s around peaks whi l e ho ld ing l e f t c l i c k ’ )

d i s p l ay ( ’ b : Press ”Space” key to cont inue the peak s e l e c t i o n ’ )

d i s p l ay ( ’ c : Press ”any other key” i f you have s e l e c t e d a peak by ’ . . .

’ mistake and want to i gnore i t ’ )

k=0;

whi l e k˜=NumPeaks

A=g e t r e c t ; % Draw a r e c t a n g l e around the peak

[ ˜ , P1]=min ( abs (F−A( 1 ) ) ) ;

[ ˜ , P2]=min ( abs (F−(A(1)+A( 3 ) ) ) ) ;

[ ˜ ,B]=max( s1 (P1 : P2 ) ) ;

Max=B+P1−1; % Frequency at the s e l e c t e d peak

s c a t t e r (F(Max) , mag2db( s1 (Max ) ) , . . .

’ MarkerEdgeColor ’ , ’ b ’ , ’ MarkerFaceColor ’ , ’ b ’ ) % Mark t h i s peak

pause ; key=get ( gcf , ’ CurrentKey ’ ) ;

Fp( end +1 ,:)=[Max,F(Max ) ] ;

i f strcmp ( key , ’ space ’ )

% Press space to cont inue peak s e l e c t i o n

k=k+1;

s c a t t e r (F(Max) , mag2db( s1 (Max ) ) , . . .

’ MarkerEdgeColor ’ , ’ g ’ , ’ MarkerFaceColor ’ , ’ g ’ ) % Mark t h i s peak as green

e l s e

% Press any other key to i gnore t h i s peak

Fp( end , : ) = [ ] ;

s c a t t e r (F(Max) , mag2db( s1 (Max) ) , ’ MarkerEdgeColor ’ , ’ r ’ , . . .

’ MarkerFaceColor ’ , ’ r ’ ) % Mark t h i s peak as red

end

end

% Number s e l e c t e d peaks , r e s p e c t i v e l y

[ ˜ , Sr ]= s o r t (Fp ( : , 2 ) ) ;

Fp=Fp( Sr , : ) ;

c l f

p l o t (F , mag2db( s1 ) , ’ k ’ )

s e t ( gcf , ’ co lo r ’ , ’w ’ ) ;

box on

hold on

x l a b e l ( ’ Frequency (Hz ) ’ )

y l a b e l ( ’ 1 s t S ingu la r va lue s o f the PSD matrix (db ) ’ )

f o r I =1: s i z e (Fp , 1 )

s c a t t e r (Fp( I , 2 ) , mag2db( s1 (Fp( I , 1 ) ) ) , ’ MarkerEdgeColor ’ , ’ g ’ , . . .

’ MarkerFaceColor ’ , ’ g ’ )
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t ex t (Fp( I , 2 ) , mag2db( s1 (Fp( I , 1 ) ) ) ∗ 1 . 0 5 , mat2str ( I ) )

end

% I d e n t i f i e d modal f r e q u e n c i e s

Frq=Fp ( : , 2 ) ;

% Compute mode shapes f o r each s e l e c t e d peak

f o r J=1: s i z e (Fp , 1 )

[ ug , ˜ , ˜ ] = svd (PSD( : , : , Fp(J , 1 ) ) ) ;

phi ( : , J ) = ug ( : , 1 ) ;

end

%% Added by Leander

dim = s i z e ( phi ) ;

i f dim (1) == 5

f i g u r e ( )

s e t ( gcf , ’ co lo r ’ , ’w ’ ) ;

g r i d on ; hold on

xlim ([− .1 dim ( 1 ) + 1 . 1 ] ) ;

yl im ([−1.1 1 . 1 ] ) ;

xvalP = 0 : 1 : dim (1)+1;

ph iPlot = ze ro s ( dim(1)+2 ,dim ( 2 ) ) ;

ph iPlot ( 2 : dim (1)+1 ,1 : dim ( 2 ) ) = phi ;

e l s e i f dim (1) == 6

f i g u r e ( )

s e t ( gcf , ’ co lo r ’ , ’w ’ ) ;

g r i d on ; hold on

xlim ([− .1 dim ( 1 ) − . 9 ] ) ;

yl im ([−1.1 1 . 1 ] ) ;

xvalP = 0 : 1 : dim(1)−1;

ph iPlot = phi ;

end

f o r i = 1 : s i z e (Fp , 1 )

p l o t ( xvalP , r e a l ( ph iPlot ( : , i ) ) / (max( abs ( r e a l ( ph iPlot ( : , i ) ) ) ) ) ) ;

box on

end

i f s i z e (Fp , 1 ) == 1

legend ( [ ’ Mode : 1 ’ num2str ( Frq ( 1 ) ) ] ) ;

e l s e i f s i z e (Fp , 1 ) == 2

legend ( [ ’ Mode : 1 , Frq=’ num2str ( Frq ( 1 ) ) ] , . . .

[ ’ Mode : 2 , Frq=’ num2str ( Frq ( 2 ) ) ] ) ;

e l s e i f s i z e (Fp , 1 ) == 3

legend ( [ ’ Mode : 1 , Frq=’ num2str ( Frq ( 1 ) ) ] , . . .

[ ’ Mode : 2 , Frq=’ num2str ( Frq ( 2 ) ) ] , . . . [ ’ Mode : 3 , Frq=’ num2str ( Frq ( 3 ) ) ] ) ;

e l s e i f s i z e (Fp , 1 ) == 4

legend ( [ ’ Mode : 1 , Frq=’ num2str ( Frq ( 1 ) ) ] , [ ’ Mode : 2 , Frq = ’ . . .

num2str ( Frq ( 2 ) ) ] , [ ’ Mode : 3 , Frq=’ num2str ( Frq ( 3 ) ) ] , . . .

[ ’ Mode : 4 , Frq=’ num2str ( Frq ( 4 ) ) ] ) ;

e l s e i f s i z e (Fp , 1 ) == 5
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l egend ( [ ’ Mode : 1 , Frq=’ num2str ( Frq ( 1 ) ) ] , [ ’ Mode : 2 , Frq = ’ . . .

num2str ( Frq ( 2 ) ) ] , [ ’ Mode : 3 , Frq=’ num2str ( Frq ( 3 ) ) ] , [ ’ Mode : 4 , Frq = ’ . . .

num2str ( Frq ( 4 ) ) ] , [ ’ Mode : 5 , Frq=’ num2str ( Frq ( 5 ) ) ] ) ;

e l s e i f s i z e (Fp , 1 ) == 6

legend ( [ ’ Mode : 1 , Frq=’ num2str ( Frq ( 1 ) ) ] , [ ’ Mode : 2 , Frq = ’ . . .

num2str ( Frq ( 2 ) ) ] , [ ’ Mode : 3 , Frq=’ num2str ( Frq ( 3 ) ) ] , [ ’ Mode : 4 , Frq = ’ . . .

num2str ( Frq ( 4 ) ) ] , [ ’ Mode : 5 , Frq=’ num2str ( Frq ( 5 ) ) ] , . . .

[ ’ Mode : 6 , Frq=’ num2str ( Frq ( 6 ) ) ] ) ;

e l s e i f s i z e (Fp , 1 ) == 7

legend ( [ ’ Mode : 1 , Frq=’ num2str ( Frq ( 1 ) ) ] , [ ’ Mode : 2 , Frq = ’ . . .

num2str ( Frq ( 2 ) ) ] , [ ’ Mode : 3 , Frq=’ num2str ( Frq ( 3 ) ) ] , [ ’ Mode : 4 , Frq = ’ . . .

num2str ( Frq ( 4 ) ) ] , [ ’ Mode : 5 , Frq=’ num2str ( Frq ( 5 ) ) ] , [ ’ Mode : 6 , Frq = ’ . . .

num2str ( Frq ( 6 ) ) ] , [ ’ Mode : 7 , Frq=’ num2str ( Frq ( 7 ) ) ] ) ;

e l s e i f s i z e (Fp , 1 ) == 8

legend ( [ ’ Mode : 1 , Frq=’ num2str ( Frq ( 1 ) ) ] , [ ’ Mode : 2 , Frq = ’ . . .

num2str ( Frq ( 2 ) ) ] , [ ’ Mode : 3 , Frq=’ num2str ( Frq ( 3 ) ) ] , [ ’ Mode : 4 , Frq = ’ . . .

num2str ( Frq ( 4 ) ) ] , [ ’ Mode : 5 , Frq=’ num2str ( Frq ( 5 ) ) ] , [ ’ Mode : 6 , Frq = ’ . . .

num2str ( Frq ( 6 ) ) ] , [ ’ Mode : 7 , Frq=’ num2str ( Frq ( 7 ) ) ] , [ ’ Mode : 8 , Frq = ’ . . .

num2str ( Frq ( 8 ) ) ] ) ;

e l s e i f s i z e (Fp , 1 ) == 9

legend ( [ ’ Mode : 1 , Frq=’ num2str ( Frq ( 1 ) ) ] , [ ’ Mode : 2 , Frq = ’ . . .

num2str ( Frq ( 2 ) ) ] , [ ’ Mode : 3 , Frq=’ num2str ( Frq ( 3 ) ) ] , [ ’ Mode : 4 , Frq = ’ . . .

num2str ( Frq ( 4 ) ) ] , [ ’ Mode : 5 , Frq=’ num2str ( Frq ( 5 ) ) ] , [ ’ Mode : 6 , Frq = ’ . . .

num2str ( Frq ( 6 ) ) ] , [ ’ Mode : 7 , Frq=’ num2str ( Frq ( 7 ) ) ] , [ ’ Mode : 8 , Frq = ’ . . .

num2str ( Frq ( 8 ) ) ] , [ ’ Mode : 9 , Frq=’ num2str ( Frq ( 9 ) ) ] ) ;

e l s e i f s i z e (Fp , 1 ) == 10

legend ( [ ’ Mode : 1 , Frq=’ num2str ( Frq ( 1 ) ) ] , [ ’ Mode : 2 , Frq = ’ . . .

num2str ( Frq ( 2 ) ) ] , [ ’ Mode : 3 , Frq=’ num2str ( Frq ( 3 ) ) ] , [ ’ Mode : 4 , Frq = ’ . . .

num2str ( Frq ( 4 ) ) ] , [ ’ Mode : 5 , Frq=’ num2str ( Frq ( 5 ) ) ] , [ ’ Mode : 6 , Frq = ’ . . .

num2str ( Frq ( 6 ) ) ] , [ ’ Mode : 7 , Frq=’ num2str ( Frq ( 7 ) ) ] , [ ’ Mode : 8 , Frq = ’ . . .

num2str ( Frq ( 8 ) ) ] , [ ’ Mode : 9 , Frq=’ num2str ( Frq ( 9 ) ) ] , [ ’ Mode : 10 , Frq = ’ . . .

num2str ( Frq ( 1 0 ) ) ] ) ;

e l s e i f s i z e (Fp , 1 ) == 11

legend ( [ ’ Mode : 1 , Frq=’ num2str ( Frq ( 1 ) ) ] , [ ’ Mode : 2 , Frq = ’ . . .

num2str ( Frq ( 2 ) ) ] , [ ’ Mode : 3 , Frq=’ num2str ( Frq ( 3 ) ) ] , [ ’ Mode : 4 , Frq = ’ . . .

num2str ( Frq ( 4 ) ) ] , [ ’ Mode : 5 , Frq=’ num2str ( Frq ( 5 ) ) ] , [ ’ Mode : 6 , Frq = ’ . . .

num2str ( Frq ( 6 ) ) ] , [ ’ Mode : 7 , Frq=’ num2str ( Frq ( 7 ) ) ] , [ ’ Mode : 8 , Frq = ’ . . .

num2str ( Frq ( 8 ) ) ] , [ ’ Mode : 9 , Frq=’ num2str ( Frq ( 9 ) ) ] , [ ’ Mode : 10 , Frq = ’ . . .

num2str ( Frq ( 1 0 ) ) ] , [ ’ Mode : 11 , Frq=’ num2str ( Frq ( 1 1 ) ) ] ) ;

e l s e i f s i z e (Fp , 1 ) == 12

legend ( [ ’ Mode : 1 , Frq=’ num2str ( Frq ( 1 ) ) ] , [ ’ Mode : 2 , Frq = ’ . . .

num2str ( Frq ( 2 ) ) ] , [ ’ Mode : 3 , Frq=’ num2str ( Frq ( 3 ) ) ] , [ ’ Mode : 4 , Frq = ’ . . .

num2str ( Frq ( 4 ) ) ] , [ ’ Mode : 5 , Frq=’ num2str ( Frq ( 5 ) ) ] , [ ’ Mode : 6 , Frq = ’ . . .

num2str ( Frq ( 6 ) ) ] , [ ’ Mode : 7 , Frq=’ num2str ( Frq ( 7 ) ) ] , [ ’ Mode : 8 , Frq = ’ . . .

num2str ( Frq ( 8 ) ) ] , [ ’ Mode : 9 , Frq=’ num2str ( Frq ( 9 ) ) ] , [ ’ Mode : 10 , Frq = ’ . . .

num2str ( Frq ( 1 0 ) ) ] , [ ’ Mode : 11 , Frq=’ num2str ( Frq ( 1 1 ) ) ] , . . .

[ ’ Mode : 12 , Frq=’ num2str ( Frq ( 1 2 ) ) ] ) ;
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e l s e i f s i z e (Fp , 1 ) == 13

legend ( [ ’ Mode : 1 , Frq=’ num2str ( Frq ( 1 ) ) ] , [ ’ Mode : 2 , Frq = ’ . . .

num2str ( Frq ( 2 ) ) ] , [ ’ Mode : 3 , Frq=’ num2str ( Frq ( 3 ) ) ] , [ ’ Mode : 4 , Frq = ’ . . .

num2str ( Frq ( 4 ) ) ] , [ ’ Mode : 5 , Frq=’ num2str ( Frq ( 5 ) ) ] , [ ’ Mode : 6 , Frq = ’ . . .

num2str ( Frq ( 6 ) ) ] , [ ’ Mode : 7 , Frq=’ num2str ( Frq ( 7 ) ) ] , [ ’ Mode : 8 , Frq = ’ . . .

num2str ( Frq ( 8 ) ) ] , [ ’ Mode : 9 , Frq=’ num2str ( Frq ( 9 ) ) ] , [ ’ Mode : 10 , Frq = ’ . . .

num2str ( Frq ( 1 0 ) ) ] , [ ’ Mode : 11 , Frq=’ num2str ( Frq ( 1 1 ) ) ] , . . .

[ ’ Mode : 12 , Frq=’ num2str ( Frq ( 1 2 ) ) ] , [ ’ Mode : 13 , Frq=’ num2str ( Frq ( 1 3 ) ) ] ) ;

e l s e i f s i z e (Fp , 1 ) == 14

legend ( [ ’ Mode : 1 , Frq=’ num2str ( Frq ( 1 ) ) ] , [ ’ Mode : 2 , Frq = ’ . . .

num2str ( Frq ( 2 ) ) ] , [ ’ Mode : 3 , Frq=’ num2str ( Frq ( 3 ) ) ] , [ ’ Mode : 4 , Frq = ’ . . .

num2str ( Frq ( 4 ) ) ] , [ ’ Mode : 5 , Frq=’ num2str ( Frq ( 5 ) ) ] , [ ’ Mode : 6 , Frq = ’ . . .

num2str ( Frq ( 6 ) ) ] , [ ’ Mode : 7 , Frq=’ num2str ( Frq ( 7 ) ) ] , [ ’ Mode : 8 , Frq = ’ . . .

num2str ( Frq ( 8 ) ) ] , [ ’ Mode : 9 , Frq=’ num2str ( Frq ( 9 ) ) ] , [ ’ Mode : 10 , Frq = ’ . . .

num2str ( Frq ( 1 0 ) ) ] , [ ’ Mode : 11 , Frq=’ num2str ( Frq ( 1 1 ) ) ] , . . .

[ ’ Mode : 12 , Frq=’ num2str ( Frq ( 1 2 ) ) ] , [ ’ Mode : 13 , Frq = ’ . . .

num2str ( Frq ( 1 3 ) ) ] , [ ’ Mode : 14 , Frq=’ num2str ( Frq ( 1 4 ) ) ] ) ;

e l s e i f s i z e (Fp , 1 ) == 15

legend ( [ ’ Mode : 1 , Frq=’ num2str ( Frq ( 1 ) ) ] , [ ’ Mode : 2 , Frq = ’ . . .

num2str ( Frq ( 2 ) ) ] , [ ’ Mode : 3 , Frq=’ num2str ( Frq ( 3 ) ) ] , [ ’ Mode : 4 , Frq = ’ . . .

num2str ( Frq ( 4 ) ) ] , [ ’ Mode : 5 , Frq=’ num2str ( Frq ( 5 ) ) ] , [ ’ Mode : 6 , Frq = ’ . . .

num2str ( Frq ( 6 ) ) ] , [ ’ Mode : 7 , Frq=’ num2str ( Frq ( 7 ) ) ] , [ ’ Mode : 8 , Frq = ’ . . .

num2str ( Frq ( 8 ) ) ] , [ ’ Mode : 9 , Frq=’ num2str ( Frq ( 9 ) ) ] , [ ’ Mode : 10 , Frq = ’ . . .

num2str ( Frq ( 1 0 ) ) ] , [ ’ Mode : 11 , Frq=’ num2str ( Frq ( 1 1 ) ) ] , . . .

[ ’ Mode : 12 , Frq=’ num2str ( Frq ( 1 2 ) ) ] , [ ’ Mode : 13 , Frq = ’ . . .

num2str ( Frq ( 1 3 ) ) ] , [ ’ Mode : 14 , Frq=’ num2str ( Frq ( 1 4 ) ) ] , . . .

[ ’ Mode : 15 , Frq=’ num2str ( Frq ( 1 5 ) ) ] ) ;

end

end
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B.3 Moving standard deviation

Moving standard deviation plot

f unc t i on MovingStandardDevationPlot ( Hit , a l t , Acc1 , Acc2 , SamplePoints , . . .

xlimLow , xlimHigh , ylimLow , ylimHigh , funcCount )

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

%%%%% Change these paramaters %%%%%%%

% Hit = 7 ; %Impact number , 1 to 10 r e p r e s e n t i n g x1 to x10

% a l t = 1 ; %Three d i f f e r e n t a l t e r n a t i v e s f o r every h i t

% Acc1 = 4 ;

% Acc2 = 6 ;

% SamplePoints = 9 ;

% xlimLow = 4 . 5 ;

% xlimHigh = 5 . 4 ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

i f Hit == 1

i f a l t == 1

recname=’2017−08−25−10−02−41 − X1 2 . mat ’ ;

e l s e i f a l t == 2

recname=’2017−08−25−10−03−11 − X1 3 . mat ’ ;

e l s e i f a l t == 3

recname=’2017−08−25−10−04−09 − X1 5 . mat ’ ;

end

e l s e i f Hit == 2

i f a l t == 1

recname=’2017−08−25−10−24−22 − X2 5 . mat ’ ;

e l s e i f a l t == 2

recname=’2017−08−25−10−25−04 − X2 6 . mat ’ ;

e l s e i f a l t == 3

recname=’2017−08−25−10−25−36 − X2 7 . mat ’ ;

end

e l s e i f Hit == 3

i f a l t == 1

recname=’2017−08−25−10−39−45 − X3 3 . mat ’ ;

e l s e i f a l t == 2

recname=’2017−08−25−10−41−30 − X3 6 . mat ’ ;

e l s e i f a l t == 3

recname=’2017−08−25−10−42−02 − X3 7 . mat ’ ;

end

e l s e i f Hit == 4

i f a l t == 1

recname=’2017−08−25−10−50−54 − X4 1 . mat ’ ;

e l s e i f a l t == 2

recname=’2017−08−25−10−51−57 − X4 3 . mat ’ ;
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e l s e i f a l t == 3

recname=’2017−08−25−10−52−27 − X4 4 . mat ’ ;

end

e l s e i f Hit == 5

i f a l t == 1

recname=’2017−08−25−10−54−21 − X5 2 . mat ’ ;

e l s e i f a l t == 2

recname=’2017−08−25−10−55−23 − X5 4 . mat ’ ;

e l s e i f a l t == 3

recname=’2017−08−25−10−55−54 − X5 5 . mat ’ ;

end

e l s e i f Hit == 6

i f a l t == 1

recname=’2017−08−25−10−56−38 − X6 1 . mat ’ ;

e l s e i f a l t == 2

recname=’2017−08−25−10−57−08 − X6 2 . mat ’ ;

e l s e i f a l t == 3

recname=’2017−08−25−10−58−13 − X6 4 . mat ’ ;

end

e l s e i f Hit == 7

i f a l t == 1

recname=’2017−08−25−11−16−58 − X7 3 . mat ’ ;

e l s e i f a l t == 2

recname=’2017−08−25−11−17−59 − X7 5 . mat ’ ;

e l s e i f a l t == 3

recname=’2017−08−25−11−20−01 − X7 9 . mat ’ ;

end

e l s e i f Hit == 8

i f a l t == 1

recname=’2017−08−25−11−26−38 − X8 1 . mat ’ ;

e l s e i f a l t == 2

recname=’2017−08−25−11−27−40 − X8 3 . mat ’ ;

e l s e i f a l t == 3

recname=’2017−08−25−11−29−12 − X8 6 . mat ’ ;

end

e l s e i f Hit == 9

i f a l t == 1

recname=’2017−08−25−11−29−58 − X9 1 . mat ’ ;

e l s e i f a l t == 2

recname=’2017−08−25−11−31−59 − X9 5 . mat ’ ;

e l s e i f a l t == 3

recname=’2017−08−25−11−33−35 − X9 8 . mat ’ ;

end

e l s e i f Hit == 10

i f a l t == 1

recname=’2017−08−25−11−35−25 − X10 3 . mat ’ ;

e l s e i f a l t == 2
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recname=’2017−08−25−11−35−57 − X10 4 . mat ’ ;

e l s e i f a l t == 3

recname=’2017−08−25−11−37−32 − X10 7 . mat ’ ;

end

end

load ( recname ) ;

Fs = 2048 ; % Sampling f requency

%number o f samples in the measurement s e r i e s

nt=length ( ConvertedData . Data . MeasuredData ( 2 ) . Data ) ;

dt=1/Fs ; %sample ra t e i s 400 Hz

t =0: dt : dt ∗( nt−1); %c r e a t e the cor re spond ing time vec to r

T=t ( end ) ;

%D i r e c t i o n s as in Abaqus model !

a c c e l e r omet e r s =[4 6 5 ; 8 10 9 ; 12 14 13 ; 16 18 17 ; 20 22 21 ; 24 26 2 5 ] ;

a c c e l e r omet e r s = acce l e r omete r s + 2 ;

A = [ 1 2 3 4 5 6 ] ;

AllAcc = [ Acc1 Acc2 ] ;

i f Hit < 3 && min ( AllAcc ) == 1

di sp ( ’ Data from A01 f o r h i t X1 and X2 was garbage ’ )

e l s e

i f Acc1 == 2 | | Acc1 == 5

y1=ConvertedData . Data . MeasuredData ( a c c e l e r omet e r s ( Acc1 , 2 ) ) . Data ∗1 9 . 6 2 ;

%∗19.62 to go from V to m/ s ˆ2 ( read d e s c i p t i o n dodument .

e l s e

y1=−ConvertedData . Data . MeasuredData ( ac c e l e r omete r s ( Acc1 , 2 ) ) . Data ∗1 9 . 6 2 ;

%∗19.62 to go from V to m/ s ˆ2 ( read d e s c i p t i o n dodument .

end

i f Acc2 == 2 | | Acc2 == 5

y2=ConvertedData . Data . MeasuredData ( a c c e l e r omet e r s ( Acc2 , 2 ) ) . Data ∗1 9 . 6 2 ;

%∗19.62 to go from V to m/ s ˆ2 ( read d e s c i p t i o n dodument .

e l s e

y2=−ConvertedData . Data . MeasuredData ( ac c e l e r omete r s ( Acc2 , 2 ) ) . Data ∗1 9 . 6 2 ;

%∗19.62 to go from V to m/ s ˆ2 ( read d e s c i p t i o n dodument .

end

My1 = movstd ( y1 , SamplePoints )/1000 ;

My2 = movstd ( y2 , SamplePoints )/1000 ;

i f funcCount == 1

f i g u r e ( )

subplot ( 2 , 2 , 1 ) ; hold on ;

s e t ( gcf , ’ co lo r ’ , ’w ’ ) ;

p l o t ( t ,My1, ’ k ’ ) ;

111



box on

x l a b e l ( ’ Time [ s ec ] ’ ) ; y l a b e l ( ’ Standard dev i a t i on [m/ s ˆ 2 ] ’ ) ;

t i t l e ( [ ’X’ num2str ( Hit ) ] ) ;

xl im ( [ xlimLow xlimHigh ] ) ;

yl im ( [ ylimLow ylimHigh ] ) ;

hold on

p l o t ( t ,My2, ’ r ’ ) ;

l egend ( [ ’ A0 ’ num2str ( Acc1 ) ] , [ ’ A0 ’ num2str ( Acc2 ) ] )

e l s e i f funcCount == 2

subplot ( 2 , 2 , 2 ) ; hold on ;

p l o t ( t ,My1, ’ k ’ ) ;

box on

% x l a b e l ( ’ Time [ s ec ] ’ ) ; y l a b e l ( ’ Standard dev i a t i on [m/ s ˆ 2 ] ’ ) ;

t i t l e ( [ ’X’ num2str ( Hit ) ] ) ;

xl im ( [ xlimLow xlimHigh ] ) ;

yl im ( [ ylimLow ylimHigh ] ) ;

hold on

p l o t ( t ,My2, ’ r ’ ) ;

l egend ( [ ’ A0 ’ num2str ( Acc1 ) ] , [ ’ A0 ’ num2str ( Acc2 ) ] )

e l s e i f funcCount == 3

subplot ( 2 , 2 , 3 ) ; hold on ;

p l o t ( t ,My1, ’ k ’ ) ;

box on

x l a b e l ( ’ Time [ s ec ] ’ ) ; y l a b e l ( ’ Standard dev i a t i on [m/ s ˆ 2 ] ’ ) ;

% t i t l e ( [ ’X’ num2str ( Hit ) ] ) ;

xl im ( [ xlimLow xlimHigh ] ) ;

yl im ( [ ylimLow ylimHigh ] ) ;

hold on

p l o t ( t ,My2, ’ r ’ ) ;

l egend ( [ ’ A0 ’ num2str ( Acc1 ) ] , [ ’ A0 ’ num2str ( Acc2 ) ] )

e l s e i f funcCount == 4

subplot ( 2 , 2 , 4 ) ; hold on ;

p l o t ( t ,My1, ’ k ’ ) ;

box on

x l a b e l ( ’ Time [ s ec ] ’ ) ; %y l a b e l ( ’ Standard dev i a t i on [m/ s ˆ 2 ] ’ ) ;

% t i t l e ( [ ’X’ num2str ( Hit ) ] ) ;

xl im ( [ xlimLow xlimHigh ] ) ;

yl im ( [ ylimLow ylimHigh ] ) ;

hold on

p l o t ( t ,My2, ’ r ’ ) ;

l egend ( [ ’ A0 ’ num2str ( Acc1 ) ] , [ ’ A0 ’ num2str ( Acc2 ) ] )

end

end

end

Moving standard deviation subplot
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%% Cross Coro la t ion Subplot

c l e a r a l l

c l c

c l o s e a l l

%% Parameter same f o r a l l p l o t s

a l t = 1 ;

SamplePoints = 21 ;

xlimLow = 4 . 7 5 ;

xlimHigh = 5 ;

ylimLow = − .001;

ylimHigh = . 0 2 5 ;

%% F i r s t Plot

funcCount = 1 ;

Hit = 7 ; %Impact number , 1 to 10 r e p r e s e n t i n g x1 to x10

Acc1 = 4 ;

Acc2 = 6 ;

MovingStandardDevationPlot ( Hit , a l t , Acc1 , Acc2 , SamplePoints , xlimLow , . . .

xlimHigh , ylimLow , ylimHigh , funcCount )

%% Second Plot

funcCount = 2 ;

Hit = 3 ; %Impact number , 1 to 10 r e p r e s e n t i n g x1 to x10

Acc1 = 3 ;

Acc2 = 1 ;

MovingStandardDevationPlot ( Hit , a l t , Acc1 , Acc2 , SamplePoints , xlimLow , . . .

xlimHigh , ylimLow , ylimHigh , funcCount )

%% Third Plot

funcCount = 3 ;

Hit = 7 ; %Impact number , 1 to 10 r e p r e s e n t i n g x1 to x10

Acc1 = 3 ;

Acc2 = 1 ;

MovingStandardDevationPlot ( Hit , a l t , Acc1 , Acc2 , SamplePoints , xlimLow , . . .

xlimHigh , ylimLow , ylimHigh , funcCount )

%% Fourth Plot

funcCount = 4 ;

Hit = 3 ; %Impact number , 1 to 10 r e p r e s e n t i n g x1 to x10

Acc1 = 4 ;

Acc2 = 6 ;

MovingStandardDevationPlot ( Hit , a l t , Acc1 , Acc2 , SamplePoints , xlimLow , . . .

xlimHigh , ylimLow , ylimHigh , funcCount )

B.4 Cross correlation

Cross correlation function

f unc t i on CrossCorrFunc ( Hit , a l t , Reference , Acc2 , funcCount )

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

%%%%% Change these paramaters %%%%%%%
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xlimLow = − .5;

xlimHigh = . 5 ;

ylimLow = − .7;

ylimHigh = . 7 ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

i f Hit == 1

i f a l t == 1

recname=’2017−08−25−10−02−41 − X1 2 . mat ’ ;

e l s e i f a l t == 2

recname=’2017−08−25−10−03−11 − X1 3 . mat ’ ;

e l s e i f a l t == 3

recname=’2017−08−25−10−04−09 − X1 5 . mat ’ ;

end

e l s e i f Hit == 2

i f a l t == 1

recname=’2017−08−25−10−24−22 − X2 5 . mat ’ ;

e l s e i f a l t == 2

recname=’2017−08−25−10−25−04 − X2 6 . mat ’ ;

e l s e i f a l t == 3

recname=’2017−08−25−10−25−36 − X2 7 . mat ’ ;

end

e l s e i f Hit == 3

i f a l t == 1

recname=’2017−08−25−10−39−45 − X3 3 . mat ’ ;

e l s e i f a l t == 2

recname=’2017−08−25−10−41−30 − X3 6 . mat ’ ;

e l s e i f a l t == 3

recname=’2017−08−25−10−42−02 − X3 7 . mat ’ ;

end

e l s e i f Hit == 4

i f a l t == 1

recname=’2017−08−25−10−50−54 − X4 1 . mat ’ ;

e l s e i f a l t == 2

recname=’2017−08−25−10−51−57 − X4 3 . mat ’ ;

e l s e i f a l t == 3

recname=’2017−08−25−10−52−27 − X4 4 . mat ’ ;

end

e l s e i f Hit == 5

i f a l t == 1

recname=’2017−08−25−10−54−21 − X5 2 . mat ’ ;

e l s e i f a l t == 2

recname=’2017−08−25−10−55−23 − X5 4 . mat ’ ;

e l s e i f a l t == 3

recname=’2017−08−25−10−55−54 − X5 5 . mat ’ ;

end

e l s e i f Hit == 6
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i f a l t == 1

recname=’2017−08−25−10−56−38 − X6 1 . mat ’ ;

e l s e i f a l t == 2

recname=’2017−08−25−10−57−08 − X6 2 . mat ’ ;

e l s e i f a l t == 3

recname=’2017−08−25−10−58−13 − X6 4 . mat ’ ;

end

e l s e i f Hit == 7

i f a l t == 1

recname=’2017−08−25−11−16−58 − X7 3 . mat ’ ;

e l s e i f a l t == 2

recname=’2017−08−25−11−17−59 − X7 5 . mat ’ ;

e l s e i f a l t == 3

recname=’2017−08−25−11−20−01 − X7 9 . mat ’ ;

end

e l s e i f Hit == 8

i f a l t == 1

recname=’2017−08−25−11−26−38 − X8 1 . mat ’ ;

e l s e i f a l t == 2

recname=’2017−08−25−11−27−40 − X8 3 . mat ’ ;

e l s e i f a l t == 3

recname=’2017−08−25−11−29−12 − X8 6 . mat ’ ;

end

e l s e i f Hit == 9

i f a l t == 1

recname=’2017−08−25−11−29−58 − X9 1 . mat ’ ;

e l s e i f a l t == 2

recname=’2017−08−25−11−31−59 − X9 5 . mat ’ ;

e l s e i f a l t == 3

recname=’2017−08−25−11−33−35 − X9 8 . mat ’ ;

end

e l s e i f Hit == 10

i f a l t == 1

recname=’2017−08−25−11−35−25 − X10 3 . mat ’ ;

e l s e i f a l t == 2

recname=’2017−08−25−11−35−57 − X10 4 . mat ’ ;

e l s e i f a l t == 3

recname=’2017−08−25−11−37−32 − X10 7 . mat ’ ;

end

end

load ( recname ) ;

Fs = 2048 ; % Sampling f requency

%number o f samples in the measurement s e r i e s

nt=length ( ConvertedData . Data . MeasuredData ( 2 ) . Data ) ;

dt=1/Fs ;

t =0: dt : dt ∗( nt−1); %c r e a t e the cor re spond ing time vec to r
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T=t ( end ) ;

%D i r e c t i o n s as in Abaqus model !

a c c e l e r omet e r s =[4 6 5 ; 8 10 9 ; 12 14 13 ; 16 18 17 ; 20 22 21 ; 24 26 2 5 ] ;

a c c e l e r omet e r s = acce l e r omete r s + 2 ;

A = [ 1 2 3 4 5 6 ] ;

AllAcc = [ Reference Acc2 ] ;

i f Hit < 3 && min ( AllAcc ) == 1

di sp ( ’ Data from A01 f o r h i t X1 and X2 was garbage ’ )

e l s e

i f Reference == 2 | | Reference == 5

y1=ConvertedData . Data . MeasuredData ( . . .

a c c e l e r omet e r s ( Reference , 2 ) ) . Data ∗1 9 . 6 2 ;

%∗19.62 to go from V to m/ s ˆ2 ( read d e s c i p t i o n dodument .

e l s e

y1=−ConvertedData . Data . MeasuredData ( . . .

a c c e l e r omet e r s ( Reference , 2 ) ) . Data ∗1 9 . 6 2 ;

%∗19.62 to go from V to m/ s ˆ2 ( read d e s c i p t i o n dodument .

end

i f Acc2 == 2 | | Acc2 == 5

y2=ConvertedData . Data . MeasuredData ( . . .

a c c e l e r omet e r s ( Acc2 , 2 ) ) . Data ∗1 9 . 6 2 ;

%∗19.62 to go from V to m/ s ˆ2 ( read d e s c i p t i o n dodument .

e l s e

y2=−ConvertedData . Data . MeasuredData ( . . .

a c c e l e r omet e r s ( Acc2 , 2 ) ) . Data ∗1 9 . 6 2 ;

%∗19.62 to go from V to m/ s ˆ2 ( read d e s c i p t i o n dodument .

end

[ acory , lagy ] = xcorr ( y2 , y1 , 1000 , ’ c o e f f ’ ) ;

[ ˜ , Iy ] = max( abs ( acory ) ) ;

l a g D i f f y = lagy ( Iy ) ;

t imeDi f fy = l a g D i f f y /Fs ;

lagy = lagy /Fs ;

i f funcCount == 1

f i g u r e ( )

subplot ( 4 , 2 , 1 ) ; hold on ;

s e t ( gcf , ’ co lo r ’ , ’w ’ ) ;

p l o t ( lagy , acory , ’ k ’ )

box on

y l a b e l ( ’ Cross c o r r e l a t i o n (norm . ) ’ ) ;

t i t l e ( [ ’X’ num2str ( Hit ) ] ) ;

yl im ( [ ylimLow ylimHigh ] ) ;

l egend ( [ ’ A0 ’ num2str ( Acc2 ) ’ to A0 ’ num2str ( Reference ) ] )

e l s e i f funcCount == 2
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subplot ( 4 , 2 , 2 ) ; hold on ;

p l o t ( lagy , acory , ’ k ’ )

box on

t i t l e ( [ ’X’ num2str ( Hit ) ] ) ;

yl im ( [ ylimLow ylimHigh ] ) ;

l egend ( [ ’ A0 ’ num2str ( Acc2 ) ’ to A0 ’ num2str ( Reference ) ] )

e l s e i f funcCount == 3

subplot ( 4 , 2 , 3 ) ; hold on ;

p l o t ( lagy , acory , ’ k ’ )

box on

y l a b e l ( ’ Cross c o r r e l a t i o n (norm . ) ’ ) ;

xl im ( [ xlimLow xlimHigh ] ) ;

yl im ( [ ylimLow ylimHigh ] ) ;

l egend ( [ ’ A0 ’ num2str ( Acc2 ) ’ to A0 ’ num2str ( Reference ) ] )

e l s e i f funcCount == 4

subplot ( 4 , 2 , 4 ) ; hold on ;

p l o t ( lagy , acory , ’ k ’ )

box on

ylim ( [ ylimLow ylimHigh ] ) ;

l egend ( [ ’ A0 ’ num2str ( Acc2 ) ’ to A0 ’ num2str ( Reference ) ] )

e l s e i f funcCount == 5

subplot ( 4 , 2 , 5 ) ; hold on ;

p l o t ( lagy , acory , ’ k ’ )

box on

y l a b e l ( ’ Cross c o r r e l a t i o n (norm . ) ’ ) ;

yl im ( [ ylimLow ylimHigh ] ) ;

l egend ( [ ’ A0 ’ num2str ( Acc2 ) ’ to A0 ’ num2str ( Reference ) ] )

e l s e i f funcCount == 6

subplot ( 4 , 2 , 6 ) ; hold on ;

p l o t ( lagy , acory , ’ k ’ )

box on

ylim ( [ ylimLow ylimHigh ] ) ;

l egend ( [ ’ A0 ’ num2str ( Acc2 ) ’ to A0 ’ num2str ( Reference ) ] )

e l s e i f funcCount == 7

subplot ( 4 , 2 , 7 ) ; hold on ;

p l o t ( lagy , acory , ’ k ’ )

box on

x l a b e l ( ’ Lag \ tau ’ ) ;

y l a b e l ( ’ Cross c o r r e l a t i o n (norm . ) ’ ) ;

yl im ( [ ylimLow ylimHigh ] ) ;

l egend ( [ ’ A0 ’ num2str ( Acc2 ) ’ to A0 ’ num2str ( Reference ) ] )

e l s e i f funcCount == 8

subplot ( 4 , 2 , 8 ) ; hold on ;

p l o t ( lagy , acory , ’ k ’ )

box on

x l a b e l ( ’ Lag \ tau ’ ) ;

yl im ( [ ylimLow ylimHigh ] ) ;
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l egend ( [ ’ A0 ’ num2str ( Acc2 ) ’ to A0 ’ num2str ( Reference ) ] )

end

end

end

Cross correlation subplot

%% Cross Coro la t ion Subplot

c l e a r a l l

c l c

c l o s e a l l

%% Parameter same f o r a l l p l o t s

a l t = 1 ;

%% F i r s t Plot

funcCount = 1 ;

Hit = 7 ; %Impact number , 1 to 10 r e p r e s e n t i n g x1 to x10

Reference = 5 ;

Acc2 = 6 ;

CrossCorrFunc ( Hit , a l t , Reference , Acc2 , funcCount )

%% Second Plot

funcCount = 2 ;

Hit = 3 ; %Impact number , 1 to 10 r e p r e s e n t i n g x1 to x10

Reference = 2 ;

Acc2 = 1 ;

CrossCorrFunc ( Hit , a l t , Reference , Acc2 , funcCount )

%% Third Plot

funcCount = 3 ;

Hit = 7 ; %Impact number , 1 to 10 r e p r e s e n t i n g x1 to x10

Reference = 5 ;

Acc2 = 4 ;

CrossCorrFunc ( Hit , a l t , Reference , Acc2 , funcCount )

%% Fourth Plot

funcCount = 4 ;

Hit = 3 ; %Impact number , 1 to 10 r e p r e s e n t i n g x1 to x10

Reference = 2 ;

Acc2 = 3 ;

CrossCorrFunc ( Hit , a l t , Reference , Acc2 , funcCount )

%% Fi f th Plot

funcCount = 5 ;

Hit = 7 ; %Impact number , 1 to 10 r e p r e s e n t i n g x1 to x10

Reference = 5 ;

Acc2 = 3 ;

CrossCorrFunc ( Hit , a l t , Reference , Acc2 , funcCount )

%% Sixht Plot

funcCount = 6 ;

Hit = 3 ; %Impact number , 1 to 10 r e p r e s e n t i n g x1 to x10

Reference = 2 ;

118



Acc2 = 4 ;

CrossCorrFunc ( Hit , a l t , Reference , Acc2 , funcCount )

%% Seventh Plot

funcCount = 7 ;

Hit = 7 ; %Impact number , 1 to 10 r e p r e s e n t i n g x1 to x10

Reference = 5 ;

Acc2 = 1 ;

CrossCorrFunc ( Hit , a l t , Reference , Acc2 , funcCount )

%% Eight Plot

funcCount = 8 ;

Hit = 3 ; %Impact number , 1 to 10 r e p r e s e n t i n g x1 to x10

Reference = 2 ;

Acc2 = 6 ;

CrossCorrFunc ( Hit , a l t , Reference , Acc2 , funcCount )
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B.5 Normalization

Normalization plot

f unc t i on Normal i zat ionPlot ( Hit1 , Acc1 , a l t , detect , minAcc , xlimLow , xlimHigh , funcCount )

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

%%%%% Change these paramaters %%%%%%%

% Hit1 = 3 ; %Impact number , 1 to 10 r e p r e s e n t i n g x1 to x10

% Hit2 = 3 ; %Impact number , 1 to 10 r e p r e s e n t i n g x1 to x10

% Acc1 = 1 ;

% Acc2 = 3 ;

% a l t = 1 ; %Three d i f f e r e n t a l t e r n a t i v e s f o r every h i t

% normal ize = 1 ; %I f normal ize = 0 the p l o t i s not normal ized .

%Normalized i f normal ize = 1 .

% detec t = . 5 ; %The p lo t w i l l not s t a r t when the absou lute va lue

%i s lower than t h i s va lue

% minAcc = 10 ; %The p lo t w i l l always s t a r t i f the absou lute value

%of the a c c e l e r a t i o n i s b i gge r minAcc

% xlimLow = 0 ;

% xlimHigh = . 2 ;

% ylimLow = −20;

% ylimHigh = 20 ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

ylimLow = − .7;

ylimHigh = . 7 ;

i f Hit1 == 1

i f a l t == 1

recname1=’2017−08−25−10−02−41 − X1 2 . mat ’ ;

e l s e i f a l t == 2

recname1=’2017−08−25−10−03−11 − X1 3 . mat ’ ;

e l s e i f a l t == 3

recname1=’2017−08−25−10−04−09 − X1 5 . mat ’ ;

end

e l s e i f Hit1 == 2

i f a l t == 1

recname1=’2017−08−25−10−24−22 − X2 5 . mat ’ ;

e l s e i f a l t == 2

recname1=’2017−08−25−10−25−04 − X2 6 . mat ’ ;

e l s e i f a l t == 3

recname1=’2017−08−25−10−25−36 − X2 7 . mat ’ ;

end

e l s e i f Hit1 == 3

i f a l t == 1
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recname1=’2017−08−25−10−39−45 − X3 3 . mat ’ ;

e l s e i f a l t == 2

recname1=’2017−08−25−10−41−30 − X3 6 . mat ’ ;

e l s e i f a l t == 3

recname1=’2017−08−25−10−42−02 − X3 7 . mat ’ ;

end

e l s e i f Hit1 == 4

i f a l t == 1

recname1=’2017−08−25−10−50−54 − X4 1 . mat ’ ;

e l s e i f a l t == 2

recname1=’2017−08−25−10−51−57 − X4 3 . mat ’ ;

e l s e i f a l t == 3

recname1=’2017−08−25−10−52−27 − X4 4 . mat ’ ;

end

e l s e i f Hit1 == 5

i f a l t == 1

recname1=’2017−08−25−10−54−21 − X5 2 . mat ’ ;

e l s e i f a l t == 2

recname1=’2017−08−25−10−55−23 − X5 4 . mat ’ ;

e l s e i f a l t == 3

recname1=’2017−08−25−10−55−54 − X5 5 . mat ’ ;

end

e l s e i f Hit1 == 6

i f a l t == 1

recname1=’2017−08−25−10−56−38 − X6 1 . mat ’ ;

e l s e i f a l t == 2

recname1=’2017−08−25−10−57−08 − X6 2 . mat ’ ;

e l s e i f a l t == 3

recname1=’2017−08−25−10−58−13 − X6 4 . mat ’ ;

end

e l s e i f Hit1 == 7

i f a l t == 1

recname1=’2017−08−25−11−16−58 − X7 3 . mat ’ ;

e l s e i f a l t == 2

recname1=’2017−08−25−11−17−59 − X7 5 . mat ’ ;

e l s e i f a l t == 3

recname1=’2017−08−25−11−20−01 − X7 9 . mat ’ ;

end

e l s e i f Hit1 == 8

i f a l t == 1

recname1=’2017−08−25−11−26−38 − X8 1 . mat ’ ;

e l s e i f a l t == 2

recname1=’2017−08−25−11−27−40 − X8 3 . mat ’ ;

e l s e i f a l t == 3

recname1=’2017−08−25−11−29−12 − X8 6 . mat ’ ;

end

e l s e i f Hit1 == 9
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i f a l t == 1

recname1=’2017−08−25−11−29−58 − X9 1 . mat ’ ;

e l s e i f a l t == 2

recname1=’2017−08−25−11−31−59 − X9 5 . mat ’ ;

e l s e i f a l t == 3

recname1=’2017−08−25−11−33−35 − X9 8 . mat ’ ;

end

e l s e i f Hit1 == 10

i f a l t == 1

recname1=’2017−08−25−11−35−25 − X10 3 . mat ’ ;

e l s e i f a l t == 2

recname1=’2017−08−25−11−35−57 − X10 4 . mat ’ ;

e l s e i f a l t == 3

recname1=’2017−08−25−11−37−32 − X10 7 . mat ’ ;

end

end

load ( recname1 ) ;

Fs = 2048 ; % Sampling f requency

%number o f samples in the measurement s e r i e s

nt=length ( ConvertedData . Data . MeasuredData ( 2 ) . Data ) ;

dt=1/Fs ; %sample ra t e i s 400 Hz

t =0: dt : dt ∗( nt−1); %c r e a t e the cor re spond ing time vec to r

T=t ( end ) ;

%D i r e c t i o n s as in Abaqus model !

a c c e l e r omet e r s =[4 6 5 ; 8 10 9 ; 12 14 13 ; 16 18 17 ; 20 22 21 ; 24 26 2 5 ] ;

a c c e l e r omet e r s = acce l e r omete r s + 2 ;

A = [ 1 2 3 4 5 6 ] ;

i f Hit1 < 3 && Acc1 == 1

di sp ( ’ Data from A01 f o r h i t X1 and X2 was garbage ’ )

e l s e

i f Acc1 == 2 | | Acc1 == 5

% x1=ConvertedData . Data . MeasuredData ( a c c e l e r omet e r s ( Acc1 , 1 ) ) . Data ∗1 9 . 6 2 ;

%∗19.62 to go from V to m/ s ˆ2 ( read d e s c i p t i o n dodument .

y1=ConvertedData . Data . MeasuredData ( a c c e l e r omet e r s ( Acc1 , 2 ) ) . Data ∗1 9 . 6 2 ;

%∗19.62 to go from V to m/ s ˆ2 ( read d e s c i p t i o n dodument .

% z1=ConvertedData . Data . MeasuredData ( a c c e l e r omet e r s ( Acc1 , 3 ) ) . Data ∗1 9 . 6 2 ;

%∗19.62 to go from V to m/ s ˆ2 ( read d e s c i p t i o n dodument .

e l s e

% x1=ConvertedData . Data . MeasuredData ( a c c e l e r omet e r s ( Acc1 , 1 ) ) . Data ∗1 9 . 6 2 ;

%∗19.62 to go from V to m/ s ˆ2 ( read d e s c i p t i o n dodument .

y1=−ConvertedData . Data . MeasuredData ( ac c e l e r omete r s ( Acc1 , 2 ) ) . Data ∗1 9 . 6 2 ;

%∗19.62 to go from V to m/ s ˆ2 ( read d e s c i p t i o n dodument .

% z1=−ConvertedData . Data . MeasuredData ( ac c e l e r omete r s ( Acc1 , 3 ) ) . Data ∗1 9 . 6 2 ;

%∗19.62 to go from V to m/ s ˆ2 ( read d e s c i p t i o n dodument .
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end

s t a r t P l o t = 0 ;

f o r i = Fs/8+1: l ength ( y1 )

i f abs ( y1 ( i , 1 ) ) > 10∗ abs ( y1 ( i−Fs /8 ,1 ) ) && abs ( y1 ( i , 1 ) ) . . .

> detec t | | abs ( y1 ( i , 1 ) ) > minAcc

s t a r t P l o t = i ;

break

end

end

yplot1 = y1 ( s ta r tP lo t−Fs /64 : l ength ( t ) ) ;

xp lot1 = 0 : dt : ( l ength ( yp lot1 )−1)∗dt ;

normVal1 = max( y1)−min( y1 ) ;

i f funcCount == 1

f i g u r e ( ) ;

subp lot (4 , 2 , funcCount ) ; g r i d on ; hold on ;

s e t ( gcf , ’ co lo r ’ , ’w ’ ) ;

p l o t ( xplot1 , yp lot1 /normVal1 , ’ k ’ ) ;

box on

% x l a b e l ( ’ Time [ s ec ] ’ ) ;

y l a b e l ( ’Norm . acc . ’ ) ;

%t i t l e ( [ num2str ( recname ) ’ . y−Direct ion ’ ] ) ;

t i t l e ( [ ’X’ num2str ( Hit1 ) ] ) ;

xl im ( [ xlimLow xlimHigh ] ) ;

yl im ( [ ylimLow ylimHigh ] ) ;

l egend ( [ ’ A0 ’ num2str ( Acc1 ) ] )

e l s e i f funcCount == 2

subplot (4 , 2 , funcCount ) ; g r i d on ; hold on ;

p l o t ( xplot1 , yp lot1 /normVal1 , ’ k ’ ) ;

box on

% x l a b e l ( ’ Time [ s ec ] ’ ) ; y l a b e l ( ’Norm . acc . ’ ) ;

%t i t l e ( [ num2str ( recname ) ’ . y−Direct ion ’ ] ) ;

t i t l e ( [ ’X’ num2str ( Hit1 ) ] ) ;

xl im ( [ xlimLow xlimHigh ] ) ;

yl im ( [ ylimLow ylimHigh ] ) ;

l egend ( [ ’ A0 ’ num2str ( Acc1 ) ] )

e l s e i f funcCount == 3

subplot (4 , 2 , funcCount ) ; g r i d on ; hold on ;

p l o t ( xplot1 , yp lot1 /normVal1 , ’ k ’ ) ;

box on

% x l a b e l ( ’ Time [ s ec ] ’ ) ;

y l a b e l ( ’Norm . acc . ’ ) ;

%t i t l e ( [ num2str ( recname ) ’ . y−Direct ion ’ ] ) ;

% t i t l e ( [ ’ Impact X’ num2str ( Hit1 ) ] ) ;

xl im ( [ xlimLow xlimHigh ] ) ;

123



ylim ( [ ylimLow ylimHigh ] ) ;

l egend ( [ ’ A0 ’ num2str ( Acc1 ) ] )

e l s e i f funcCount == 4

subplot (4 , 2 , funcCount ) ; g r i d on ; hold on ;

p l o t ( xplot1 , yp lot1 /normVal1 , ’ k ’ ) ;

box on

% x l a b e l ( ’ Time [ s ec ] ’ ) ; y l a b e l ( ’Norm . acc . ’ ) ;

%t i t l e ( [ num2str ( recname ) ’ . y−Direct ion ’ ] ) ;

% t i t l e ( [ ’ Impact X’ num2str ( Hit1 ) ] ) ;

xl im ( [ xlimLow xlimHigh ] ) ;

yl im ( [ ylimLow ylimHigh ] ) ;

l egend ( [ ’ A0 ’ num2str ( Acc1 ) ] )

e l s e i f funcCount == 5

subplot (4 , 2 , funcCount ) ; g r i d on ; hold on ;

p l o t ( xplot1 , yp lot1 /normVal1 , ’ k ’ ) ;

box on

% x l a b e l ( ’ Time [ s ec ] ’ ) ;

y l a b e l ( ’Norm . acc . ’ ) ;

%t i t l e ( [ num2str ( recname ) ’ . y−Direct ion ’ ] ) ;

% t i t l e ( [ ’ Impact X’ num2str ( Hit1 ) ] ) ;

xl im ( [ xlimLow xlimHigh ] ) ;

yl im ( [ ylimLow ylimHigh ] ) ;

l egend ( [ ’ A0 ’ num2str ( Acc1 ) ] )

e l s e i f funcCount == 6

subplot (4 , 2 , funcCount ) ; g r i d on ; hold on ;

p l o t ( xplot1 , yp lot1 /normVal1 , ’ k ’ ) ;

box on

% x l a b e l ( ’ Time [ s ec ] ’ ) ; y l a b e l ( ’Norm . acc . ’ ) ;

%t i t l e ( [ num2str ( recname ) ’ . y−Direct ion ’ ] ) ;

% t i t l e ( [ ’ Impact X’ num2str ( Hit1 ) ] ) ;

xl im ( [ xlimLow xlimHigh ] ) ;

yl im ( [ ylimLow ylimHigh ] ) ;

l egend ( [ ’ A0 ’ num2str ( Acc1 ) ] )

e l s e i f funcCount == 7

subplot (4 , 2 , funcCount ) ; g r i d on ; hold on ;

p l o t ( xplot1 , yp lot1 /normVal1 , ’ k ’ ) ;

box on

x l a b e l ( ’ Time [ s ec ] ’ ) ; y l a b e l ( ’Norm . acc . ’ ) ;

%t i t l e ( [ num2str ( recname ) ’ . y−Direct ion ’ ] ) ;

% t i t l e ( [ ’ Impact X’ num2str ( Hit1 ) ] ) ;

xl im ( [ xlimLow xlimHigh ] ) ;

yl im ( [ ylimLow ylimHigh ] ) ;

l egend ( [ ’ A0 ’ num2str ( Acc1 ) ] )

e l s e i f funcCount == 8

subplot (4 , 2 , funcCount ) ; g r i d on ; hold on ;

p l o t ( xplot1 , yp lot1 /normVal1 , ’ k ’ ) ;

box on
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x l a b e l ( ’ Time [ s ec ] ’ ) ; %y l a b e l ( ’Norm . acc . ’ ) ;

%t i t l e ( [ num2str ( recname ) ’ . y−Direct ion ’ ] ) ;

% t i t l e ( [ ’ Impact X’ num2str ( Hit1 ) ] ) ;

xl im ( [ xlimLow xlimHigh ] ) ;

yl im ( [ ylimLow ylimHigh ] ) ;

l egend ( [ ’ A0 ’ num2str ( Acc1 ) ] )

e l s e i f funcCount == 9

f i g u r e ( ) ; g r i d on ; hold on ;

p l o t ( xplot1 , yp lot1 /normVal1 , ’ k ’ ) ;

s e t ( gcf , ’ co lo r ’ , ’w ’ ) ;

box on

x l a b e l ( ’ Time [ s ec ] ’ ) ;

y l a b e l ( ’Norm . acc . ’ ) ;

t i t l e ( [ ’X’ num2str ( Hit1 ) ] ) ;

xl im ( [ xlimLow xlimHigh ] ) ;

yl im ( [ ylimLow ylimHigh ] ) ;

l egend ( [ ’ A0 ’ num2str ( Acc1 ) ] )

end

end

end

Normalization subplot

%% SUBPLOTS

c l e a r a l l

c l c

c l o s e a l l

%% Same f o r a l l p l o t s

a l t = 1 ; %Three d i f f e r e n t a l t e r n a t i v e s f o r every h i t

xlimLow = 0 ;

xlimHigh = . 2 5 ;

%% F i r s t Plot

funcCount = 1 ;

Hit1 = 3 ; %Impact number , 1 to 10 r e p r e s e n t i n g x1 to x10

Acc1 = 3 ;

de t e c t = . 5 ; %The p lo t w i l l not s t a r t when the absou lute va lue i s

%lower than t h i s va lue

minAcc = 10 ; %The p lo t w i l l always s t a r t i f the absou lute value o f

%the a c c e l e r a t i o n i s b i gge r minAcc

Normal i zat ionPlot ( Hit1 , Acc1 , a l t , detect , minAcc , xlimLow , . . .

xlimHigh , funcCount )

%% Second Plot

funcCount = 2 ;

Hit1 = 7 ; %Impact number , 1 to 10 r e p r e s e n t i n g x1 to x10

Acc1 = 4 ;
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detec t = . 5 ; %The p lo t w i l l not s t a r t when the absou lute va lue i s

%lower than t h i s va lue

minAcc = 10 ; %The p lo t w i l l always s t a r t i f the absou lute va lue o f

%the a c c e l e r a t i o n i s b i gge r minAcc

Normal i zat ionPlot ( Hit1 , Acc1 , a l t , detect , minAcc , xlimLow , . . .

xlimHigh , funcCount )

%% Third Plot

funcCount = 3 ;

Hit1 = 3 ; %Impact number , 1 to 10 r e p r e s e n t i n g x1 to x10

Acc1 = 1 ;

de t e c t = . 5 ; %The p lo t w i l l not s t a r t when the absou lute va lue i s

%lower than t h i s va lue

minAcc = 10 ; %The p lo t w i l l always s t a r t i f the absou lute va lue o f

%the a c c e l e r a t i o n i s b i gge r minAcc

Normal i zat ionPlot ( Hit1 , Acc1 , a l t , detect , minAcc , xlimLow , . . .

xlimHigh , funcCount )

%% Fourth Plot

funcCount = 4 ;

Hit1 = 7 ; %Impact number , 1 to 10 r e p r e s e n t i n g x1 to x10

Acc1 = 6 ;

de t e c t = . 5 ; %The p lo t w i l l not s t a r t when the absou lute va lue i s

%lower than t h i s va lue

minAcc = 10 ; %The p lo t w i l l always s t a r t i f the absou lute va lue o f

%the a c c e l e r a t i o n i s b i gge r minAcc

Normal i zat ionPlot ( Hit1 , Acc1 , a l t , detect , minAcc , xlimLow , . . .

xlimHigh , funcCount )

%% Fi f th Plot

funcCount = 5 ;

Hit1 = 3 ; %Impact number , 1 to 10 r e p r e s e n t i n g x1 to x10

Acc1 = 4 ;

de t e c t = . 5 ; %The p lo t w i l l not s t a r t when the absou lute va lue i s

%lower than t h i s va lue

minAcc = 10 ; %The p lo t w i l l always s t a r t i f the absou lute va lue o f

%the a c c e l e r a t i o n i s b i gge r minAcc

Normal i zat ionPlot ( Hit1 , Acc1 , a l t , detect , minAcc , xlimLow , . . .

xlimHigh , funcCount )

%% Sixth Plot

funcCount = 6 ;

Hit1 = 7 ; %Impact number , 1 to 10 r e p r e s e n t i n g x1 to x10

Acc1 = 3 ;

de t e c t = . 5 ; %The p lo t w i l l not s t a r t when the absou lute va lue

%i s lower than t h i s va lue

minAcc = 10 ; %The p lo t w i l l always s t a r t i f the absou lute va lue

%of the a c c e l e r a t i o n i s b i gge r minAcc

Normal i zat ionPlot ( Hit1 , Acc1 , a l t , detect , minAcc , xlimLow , . . .

xlimHigh , funcCount )

%% Seventh Plot
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funcCount = 7 ;

Hit1 = 3 ; %Impact number , 1 to 10 r e p r e s e n t i n g x1 to x10

Acc1 = 6 ;

de t e c t = . 5 ; %The p lo t w i l l not s t a r t when the absou lute va lue

%i s lower than t h i s va lue

minAcc = 10 ; %The p lo t w i l l always s t a r t i f the absou lute va lue o f

%the a c c e l e r a t i o n i s b i gge r minAcc

Normal i zat ionPlot ( Hit1 , Acc1 , a l t , detect , minAcc , xlimLow , . . .

xlimHigh , funcCount )

%% Eigth Plot

funcCount = 8 ;

Hit1 = 7 ; %Impact number , 1 to 10 r e p r e s e n t i n g x1 to x10

Acc1 = 1 ;

de t e c t = . 5 ; %The p lo t w i l l not s t a r t when the absou lute va lue i s

%lower than t h i s va lue

minAcc = 10 ; %The p lo t w i l l always s t a r t i f the absou lute va lue o f

%the a c c e l e r a t i o n i s b i gge r minAcc

Normal i zat ionPlot ( Hit1 , Acc1 , a l t , detect , minAcc , xlimLow , . . .

xlimHigh , funcCount )

B.6 Frequency response function

c l c

c l e a r a l l

c l o s e a l l

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

%%%%% Change these paramaters %%%%%%%

Hit1 = 7 ; %Impact number , 1 to 10 r e p r e s e n t i n g x1 to x10

Acc1 = 1 ;

Acc2 = 3 ;

a l t = 3 ; %Three d i f f e r e n t a l t e r n a t i v e s f o r every h i t

Nwelch = 0 ;

FreqPlotStart =.5 ; %Def ines s t a r t o f x a x i s in p l o t

FreqPlotEnd =200; %Def ine s end o f x a x i s in p l o t

PlotFreq =200; %End o f f requency value to mark peaks

MinPeakDist = 0 . 5 ; %Minimum d i s t ance between peaks

ylimLow = − .0001;

ylimHigh = . 0 1 5 ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

%D i r e c t i o n s as in Abaqus model !

a c c e l e r omet e r s =[4 6 5 ; 8 10 9 ; 12 14 13 ; 16 18 17 ; 20 22 21 ; 24 26 2 5 ] ;

a c c e l e r omet e r s = acce l e r omete r s + 2 ;

A = [ 1 2 3 4 5 6 ] ;

Fs = 2048 ; % Sampling f requency
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dt=1/Fs ;

i f Hit1 == 1

i f a l t == 1

recname1=’2017−08−25−10−02−41 − X1 2 . mat ’ ;

e l s e i f a l t == 2

recname1=’2017−08−25−10−03−11 − X1 3 . mat ’ ;

e l s e i f a l t == 3

recname1=’2017−08−25−10−04−09 − X1 5 . mat ’ ;

end

e l s e i f Hit1 == 2

i f a l t == 1

recname1=’2017−08−25−10−24−22 − X2 5 . mat ’ ;

e l s e i f a l t == 2

recname1=’2017−08−25−10−25−04 − X2 6 . mat ’ ;

e l s e i f a l t == 3

recname1=’2017−08−25−10−25−36 − X2 7 . mat ’ ;

end

e l s e i f Hit1 == 3

i f a l t == 1

recname1=’2017−08−25−10−39−45 − X3 3 . mat ’ ;

e l s e i f a l t == 2

recname1=’2017−08−25−10−41−30 − X3 6 . mat ’ ;

e l s e i f a l t == 3

recname1=’2017−08−25−10−42−02 − X3 7 . mat ’ ;

end

e l s e i f Hit1 == 4

i f a l t == 1

recname1=’2017−08−25−10−50−54 − X4 1 . mat ’ ;

e l s e i f a l t == 2

recname1=’2017−08−25−10−51−57 − X4 3 . mat ’ ;

e l s e i f a l t == 3

recname1=’2017−08−25−10−52−27 − X4 4 . mat ’ ;

end

e l s e i f Hit1 == 5

i f a l t == 1

recname1=’2017−08−25−10−54−21 − X5 2 . mat ’ ;

e l s e i f a l t == 2

recname1=’2017−08−25−10−55−23 − X5 4 . mat ’ ;

e l s e i f a l t == 3

recname1=’2017−08−25−10−55−54 − X5 5 . mat ’ ;

end

e l s e i f Hit1 == 6

i f a l t == 1

recname1=’2017−08−25−10−56−38 − X6 1 . mat ’ ;

e l s e i f a l t == 2

recname1=’2017−08−25−10−57−08 − X6 2 . mat ’ ;
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e l s e i f a l t == 3

recname1=’2017−08−25−10−58−13 − X6 4 . mat ’ ;

end

e l s e i f Hit1 == 7

i f a l t == 1

recname1=’2017−08−25−11−16−58 − X7 3 . mat ’ ;

e l s e i f a l t == 2

recname1=’2017−08−25−11−17−59 − X7 5 . mat ’ ;

e l s e i f a l t == 3

recname1=’2017−08−25−11−20−01 − X7 9 . mat ’ ;

end

e l s e i f Hit1 == 8

i f a l t == 1

recname1=’2017−08−25−11−26−38 − X8 1 . mat ’ ;

e l s e i f a l t == 2

recname1=’2017−08−25−11−27−40 − X8 3 . mat ’ ;

e l s e i f a l t == 3

recname1=’2017−08−25−11−29−12 − X8 6 . mat ’ ;

end

e l s e i f Hit1 == 9

i f a l t == 1

recname1=’2017−08−25−11−29−58 − X9 1 . mat ’ ;

e l s e i f a l t == 2

recname1=’2017−08−25−11−31−59 − X9 5 . mat ’ ;

e l s e i f a l t == 3

recname1=’2017−08−25−11−33−35 − X9 8 . mat ’ ;

end

e l s e i f Hit1 == 10

i f a l t == 1

recname1=’2017−08−25−11−35−25 − X10 3 . mat ’ ;

e l s e i f a l t == 2

recname1=’2017−08−25−11−35−57 − X10 4 . mat ’ ;

e l s e i f a l t == 3

recname1=’2017−08−25−11−37−32 − X10 7 . mat ’ ;

end

end

load ( recname1 ) ;

%number o f samples in the measurement s e r i e s

nt=length ( ConvertedData . Data . MeasuredData ( 2 ) . Data ) ;

t =0: dt : dt ∗( nt−1); %c r e a t e the cor re spond ing time vec to r

T=t ( end ) ;

i f Hit1 < 3 && Acc1 == 1

di sp ( ’ Data from A01 f o r h i t X1 and X2 was garbage ’ )

e l s e
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i f Acc1 == 2 | | Acc1 == 5

x1=ConvertedData . Data . MeasuredData ( a c c e l e r omet e r s ( Acc1 , 1 ) ) . Data ∗1 9 . 6 2 ;

%∗19.62 to go from V to m/ s ˆ2 ( read d e s c i p t i o n dodument .

y1=ConvertedData . Data . MeasuredData ( a c c e l e r omet e r s ( Acc1 , 2 ) ) . Data ∗1 9 . 6 2 ;

%∗19.62 to go from V to m/ s ˆ2 ( read d e s c i p t i o n dodument .

z1=ConvertedData . Data . MeasuredData ( a c c e l e r omet e r s ( Acc1 , 3 ) ) . Data ∗1 9 . 6 2 ;

%∗19.62 to go from V to m/ s ˆ2 ( read d e s c i p t i o n dodument .

e l s e

x1=ConvertedData . Data . MeasuredData ( a c c e l e r omet e r s ( Acc1 , 1 ) ) . Data ∗1 9 . 6 2 ;

%∗19.62 to go from V to m/ s ˆ2 ( read d e s c i p t i o n dodument .

y1=−ConvertedData . Data . MeasuredData ( ac c e l e r omete r s ( Acc1 , 2 ) ) . Data ∗1 9 . 6 2 ;

%∗19.62 to go from V to m/ s ˆ2 ( read d e s c i p t i o n dodument .

z1=−ConvertedData . Data . MeasuredData ( ac c e l e r omete r s ( Acc1 , 3 ) ) . Data ∗1 9 . 6 2 ;

%∗19.62 to go from V to m/ s ˆ2 ( read d e s c i p t i o n dodument .

end

i f Acc2 == 2 | | Acc2 == 5

x2=ConvertedData . Data . MeasuredData ( a c c e l e r omet e r s ( Acc2 , 1 ) ) . Data ∗1 9 . 6 2 ;

%∗19.62 to go from V to m/ s ˆ2 ( read d e s c i p t i o n dodument .

y2=ConvertedData . Data . MeasuredData ( a c c e l e r omet e r s ( Acc2 , 2 ) ) . Data ∗1 9 . 6 2 ;

%∗19.62 to go from V to m/ s ˆ2 ( read d e s c i p t i o n dodument .

z2=ConvertedData . Data . MeasuredData ( a c c e l e r omet e r s ( Acc2 , 3 ) ) . Data ∗1 9 . 6 2 ;

%∗19.62 to go from V to m/ s ˆ2 ( read d e s c i p t i o n dodument .

e l s e

x2=ConvertedData . Data . MeasuredData ( a c c e l e r omet e r s ( Acc2 , 1 ) ) . Data ∗1 9 . 6 2 ;

%∗19.62 to go from V to m/ s ˆ2 ( read d e s c i p t i o n dodument .

y2=−ConvertedData . Data . MeasuredData ( ac c e l e r omete r s ( Acc2 , 2 ) ) . Data ∗1 9 . 6 2 ;

%∗19.62 to go from V to m/ s ˆ2 ( read d e s c i p t i o n dodument .

z2=−ConvertedData . Data . MeasuredData ( ac c e l e r omete r s ( Acc2 , 3 ) ) . Data ∗1 9 . 6 2 ;

%∗19.62 to go from V to m/ s ˆ2 ( read d e s c i p t i o n dodument .

end

i f Nwelch == 0

[ Pyy1 , fy1 ] = pwelch ( y1 , [ ] , [ ] , [ ] , Fs ) ;

[ Pyy2 , fy2 ] = pwelch ( y2 , [ ] , [ ] , [ ] , Fs ) ;

e l s e

Nwindow=round ( l ength ( t )/ Nwelch ) ; %length o f window

n f f t =2ˆnextpow2 (Nwindow ) ; %number o f FFT po in t s

[ Pyy1 , fy1 ] = pwelch ( y1 , hanning (Nwindow ) , [ ] , n f f t , Fs ) ;

[ Pyy2 , fy2 ] = pwelch ( y2 , hanning (Nwindow ) , [ ] , n f f t , Fs ) ;

end

f i g u r e ( ) ; hold on ;

s e t ( gcf , ’ co lo r ’ , ’w ’ ) ;

p l o t ( fy1 , ( Pyy1 )∗100 , ’ k ’ ) ;

p l o t ( fy2 , ( Pyy2 )∗100 , ’ r ’ ) ;

box on
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x l a b e l ( ’ f [ Hz ] ’ ) ; y l a b e l ( ’ Power ’ ) ;

t i t l e ( [ ’X’ num2str ( Hit1 ) ] ) ;

xl im ( [ FreqPlotStart FreqPlotEnd ] )

ylim ( [ ylimLow ylimHigh ] )

l egend ( [ ’ A0 ’ num2str ( Acc1 ) ] , [ ’ A0 ’ num2str ( Acc2 ) ] )

end

FRFvsPSD

c l c

c l e a r a l l

c l o s e a l l

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

%%%%% Change these paramaters %%%%%%%

Hit1 = 3 ; %Impact number , 1 to 10 r e p r e s e n t i n g x1 to x10

Acc1 = 1 ;

Acc2 = 3 ;

a l t = 3 ; %Three d i f f e r e n t a l t e r n a t i v e s f o r every h i t

FreqPlotStart =.5 ; %Def ines s t a r t o f x a x i s in p l o t

FreqPlotEnd =100; %Def ine s end o f x a x i s in p l o t

ylimLow = − .0001;

ylimHigh = . 0 1 0 5 ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

%D i r e c t i o n s as in Abaqus model !

a c c e l e r omet e r s =[4 6 5 ; 8 10 9 ; 12 14 13 ; 16 18 17 ; 20 22 21 ; 24 26 2 5 ] ;

a c c e l e r omet e r s = acce l e r omete r s + 2 ;

A = [ 1 2 3 4 5 6 ] ;

Fs = 2048 ; % Sampling f requency

dt=1/Fs ;

i f Hit1 == 1

i f a l t == 1

recname1=’2017−08−25−10−02−41 − X1 2 . mat ’ ;

e l s e i f a l t == 2

recname1=’2017−08−25−10−03−11 − X1 3 . mat ’ ;

e l s e i f a l t == 3

recname1=’2017−08−25−10−04−09 − X1 5 . mat ’ ;

end

e l s e i f Hit1 == 2

i f a l t == 1

recname1=’2017−08−25−10−24−22 − X2 5 . mat ’ ;

e l s e i f a l t == 2

recname1=’2017−08−25−10−25−04 − X2 6 . mat ’ ;

e l s e i f a l t == 3
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recname1=’2017−08−25−10−25−36 − X2 7 . mat ’ ;

end

e l s e i f Hit1 == 3

i f a l t == 1

recname1=’2017−08−25−10−39−45 − X3 3 . mat ’ ;

e l s e i f a l t == 2

recname1=’2017−08−25−10−41−30 − X3 6 . mat ’ ;

e l s e i f a l t == 3

recname1=’2017−08−25−10−42−02 − X3 7 . mat ’ ;

end

e l s e i f Hit1 == 4

i f a l t == 1

recname1=’2017−08−25−10−50−54 − X4 1 . mat ’ ;

e l s e i f a l t == 2

recname1=’2017−08−25−10−51−57 − X4 3 . mat ’ ;

e l s e i f a l t == 3

recname1=’2017−08−25−10−52−27 − X4 4 . mat ’ ;

end

e l s e i f Hit1 == 5

i f a l t == 1

recname1=’2017−08−25−10−54−21 − X5 2 . mat ’ ;

e l s e i f a l t == 2

recname1=’2017−08−25−10−55−23 − X5 4 . mat ’ ;

e l s e i f a l t == 3

recname1=’2017−08−25−10−55−54 − X5 5 . mat ’ ;

end

e l s e i f Hit1 == 6

i f a l t == 1

recname1=’2017−08−25−10−56−38 − X6 1 . mat ’ ;

e l s e i f a l t == 2

recname1=’2017−08−25−10−57−08 − X6 2 . mat ’ ;

e l s e i f a l t == 3

recname1=’2017−08−25−10−58−13 − X6 4 . mat ’ ;

end

e l s e i f Hit1 == 7

i f a l t == 1

recname1=’2017−08−25−11−16−58 − X7 3 . mat ’ ;

e l s e i f a l t == 2

recname1=’2017−08−25−11−17−59 − X7 5 . mat ’ ;

e l s e i f a l t == 3

recname1=’2017−08−25−11−20−01 − X7 9 . mat ’ ;

end

e l s e i f Hit1 == 8

i f a l t == 1

recname1=’2017−08−25−11−26−38 − X8 1 . mat ’ ;

e l s e i f a l t == 2

recname1=’2017−08−25−11−27−40 − X8 3 . mat ’ ;
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e l s e i f a l t == 3

recname1=’2017−08−25−11−29−12 − X8 6 . mat ’ ;

end

e l s e i f Hit1 == 9

i f a l t == 1

recname1=’2017−08−25−11−29−58 − X9 1 . mat ’ ;

e l s e i f a l t == 2

recname1=’2017−08−25−11−31−59 − X9 5 . mat ’ ;

e l s e i f a l t == 3

recname1=’2017−08−25−11−33−35 − X9 8 . mat ’ ;

end

e l s e i f Hit1 == 10

i f a l t == 1

recname1=’2017−08−25−11−35−25 − X10 3 . mat ’ ;

e l s e i f a l t == 2

recname1=’2017−08−25−11−35−57 − X10 4 . mat ’ ;

e l s e i f a l t == 3

recname1=’2017−08−25−11−37−32 − X10 7 . mat ’ ;

end

end

load ( recname1 ) ;

%number o f samples in the measurement s e r i e s

nt=length ( ConvertedData . Data . MeasuredData ( 2 ) . Data ) ;

t =0: dt : dt ∗( nt−1); %c r e a t e the cor re spond ing time vec to r

T=t ( end ) ;

i f Hit1 < 3 && Acc1 == 1

di sp ( ’ Data from A01 f o r h i t X1 and X2 was garbage ’ )

e l s e

i f Acc1 == 2 | | Acc1 == 5

y1=ConvertedData . Data . MeasuredData ( a c c e l e r omet e r s ( Acc1 , 2 ) ) . Data ∗1 9 . 6 2 ;

%∗19.62 to go from V to m/ s ˆ2 ( read d e s c i p t i o n dodument .

e l s e

y1=−ConvertedData . Data . MeasuredData ( ac c e l e r omete r s ( Acc1 , 2 ) ) . Data ∗1 9 . 6 2 ;

%∗19.62 to go from V to m/ s ˆ2 ( read d e s c i p t i o n dodument .

end

i f Acc2 == 2 | | Acc2 == 5

y2=ConvertedData . Data . MeasuredData ( a c c e l e r omet e r s ( Acc2 , 2 ) ) . Data ∗1 9 . 6 2 ;

%∗19.62 to go from V to m/ s ˆ2 ( read d e s c i p t i o n dodument .

e l s e

y2=−ConvertedData . Data . MeasuredData ( ac c e l e r omete r s ( Acc2 , 2 ) ) . Data ∗1 9 . 6 2 ;

%∗19.62 to go from V to m/ s ˆ2 ( read d e s c i p t i o n dodument .

end
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Hammer=ConvertedData . Data . MeasuredData ( 2 ) . Data ∗4347 .8261 ;

%∗4347.8261 to go from V/N to N/V ( read d e s c i p t i o n dodument .

[ Pyy1 , fy1 ] = pwelch ( y1 , [ ] , [ ] , [ ] , Fs ) ;

[ Pyy2 , fy2 ] = pwelch ( y2 , [ ] , [ ] , [ ] , Fs ) ;

[ Sxx , f ] = pwelch ( y1 ( : ) , [ ] , [ ] , [ ] , Fs ) ; % s i n g l e−s ided PSD

[ S f f , ˜ ] = pwelch (Hammer ( : ) , [ ] , [ ] , [ ] , Fs ) ; % s i n g l e−s ided PSD

[ Sxf , ˜ ] = cpsd ( y1 ( : ) , Hammer ( : ) , [ ] , [ ] , [ ] , Fs ) ; % s i n g l e−s ided CSD

[ Sfx , ˜ ] = cpsd (Hammer ( : ) , y1 ( : ) , [ ] , [ ] , [ ] , Fs ) ; % s i n g l e−s ided CSD

[ Sxx2 , f 2 ] = pwelch ( y2 ( : ) , [ ] , [ ] , [ ] , Fs ) ; % s i n g l e−s ided PSD

[ Sf f2 , ˜ ] = pwelch (Hammer ( : ) , [ ] , [ ] , [ ] , Fs ) ; % s i n g l e−s ided PSD

[ Sxf2 , ˜ ] = cpsd ( y2 ( : ) , Hammer ( : ) , [ ] , [ ] , [ ] , Fs ) ; % s i n g l e−s ided CSD

[ Sfx2 , ˜ ] = cpsd (Hammer ( : ) , y2 ( : ) , [ ] , [ ] , [ ] , Fs ) ; % s i n g l e−s ided CSD

H = ( Sxf . / S f f ) . ’ ;

H2 = ( Sxf2 . / S f f 2 ) . ’ ;

f i g u r e ( ) ; hold on

s e t ( gcf , ’ co lo r ’ , ’w ’ ) ;

subp lot ( 1 , 2 , 1 ) ; hold on

p l o t ( f , ( abs (H) ) , ’ r ’ ) ;

p l o t ( fy1 , ( Pyy1 )∗100 , ’ k ’ ) ;

box on

x l a b e l ( ’ f [ Hz ] ’ ) ; y l a b e l ( ’ Power ’ ) ;

t i t l e ( [ ’X’ num2str ( Hit1 ) ] ) ;

xl im ( [ FreqPlotStart FreqPlotEnd ] )

ylim ( [ ylimLow ylimHigh ] )

l egend ( [ ’FRF A0 ’ num2str ( Acc1 ) ] , [ ’PSD A0 ’ num2str ( Acc1 ) ] )

s e t ( gcf , ’ co lo r ’ , ’w ’ ) ;

subp lot ( 1 , 2 , 2 ) ; hold on

p l o t ( f2 , ( abs (H2) ) , ’ r ’ ) ;

p l o t ( fy2 , ( Pyy2 )∗100 , ’ k ’ ) ;

box on

x l a b e l ( ’ f [ Hz ] ’ ) ; y l a b e l ( ’ Power ’ ) ;

t i t l e ( [ ’X’ num2str ( Hit1 ) ] ) ;

xl im ( [ FreqPlotStart FreqPlotEnd ] )

ylim ( [ ylimLow ylimHigh ] )

l egend ( [ ’FRF A0 ’ num2str ( Acc2 ) ] , [ ’PSD A0 ’ num2str ( Acc2 ) ] )

end

B.7 Non-linear spring formulation

c l c

c l e a r a l l
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%The s c r i p t produces the fo r ce−disp lacement r e l a t i o n s f o r the

%Non−l i n e a r sp r ing fo rmu la t i ons

F0 = 0 ; %I n i t i a l f r i c t i o n f o r c e

k3 = 2.25 e7 %N/m Def ine s contact with under ly ing s t i f f e n e r

u3 = 0.0045 %4.5mm c l e a r i n g to the under ly ing L−p r o f i l e

F3 = k3∗u3 ;

kmax = 2.25 e7 ;

Fkmax = kmax∗u3

xlimLow = 0 ;

xlimHigh = 0 . 0 0 4 5 ;

ylimLow = 0 ;

ylimHigh = 1e5 ;

%Parameters

%% Linear sp r ing fo rmulat ion

k l1 = 1e6 ;

%% Multi l i n e a r pena l ty model

k1 = 1e7 ;

k2 = 1 ;

u1 = 0.0005

u2 = 0.004

%% Power−funct ion−based non l in ea r pena l ty model

m = 2 ;

i = 20 ;

ke = 1e9 ;

kebased = 0 ;

mbased = 1 ;

%% Combined quadrat ic−l i n e a r pena l ty model

uc0 = −0.001;

uc1 = 0 . 0 0 2 ;

kc1 = 2e7 ;

i = 15 ;

%CALCULATIONS

%% Linear sp r ing fo rmulat ion

uaa = [ 0 , u3 /2 , u3 ] ;

Fa = [ 0 , ( u3 /2)∗ kl1 , u3∗ k l1 ] ;

%% Multi l i n e a r pena l ty model c a l c u l a t i o n s

F1 = k1∗u1

F2 = F1+k2∗u2

ubb = [ 0 , u1 , u2 , u3 ] ;

Fb = [ 0 , F1 , F2 , F3 ] ;

%% Power−funct ion−based non l in ea r pena l ty model c a l c u l a t i o n s

ucc = 0 : u3/ i : u3 ;

Etest = (Fkmax)/( u3ˆm) ;

mtest = log ( (Fkmax/ke ) )/ l og ( 0 . 0 0 4 5 ) ;

i f kebased == 1 ;

ke = Etest ;

end
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i f mbased == 1 ;

m = mtest ;

end

Fc = ke ∗( abs ( ucc ) ) . ˆm;

%% Combined quadrat ic−l i n e a r pena l ty model c a l c u l a t i o n s

uca = [ uc0 : uc1/ i : uc1 ] ;

%ua = s o r t ( ua ) ;

ucb = u3 ;

F1 = (1/(2∗ ( uc1−uc0 ) ) )∗ kc1 ∗ ( ( uca−uc0 ) . ˆ 2 ) ;

Ftes t=F1 (1)

F2 = kc1∗ucb−0.5∗k1 ∗( uc1+uc0 ) ;

Fd = [ F1 , F2 ] ;

udd = [ uca , ucb ] ;

%% Plo t t i ng the data

f i g u r e ( ) ; hold on

p l o t ( uaa , Fa ’ , ’ k ’ )

p l o t (ubb , Fb,’−−k ’ )

p l o t ( ucc , Fc,’−−∗k ’ )

p l o t (udd , Fd, ’− . k ’ )

yl im ( [ ylimLow ylimHigh ] ) ;

xl im ( [ xlimLow xlimHigh ] ) ;

x l a b e l ( ’ u [mm] ’ )

y l a b e l ( ’ F f [N] ’ )

l egend ( ’ Linear ’ , ’ML’ , ’PFB’ , ’CQL’ , ’ l o ca t i on ’ , ’ northwest ’ )

%% Output data f o r the FE model

AbaDataLinear=[uaa ’ , Fa ’ ] ; %Linear sp r ing formulat ion

AbaDataMultiLinear=[ubb ’ , Fb ’ ] ; %Multi−l i n e a r sp r ing formulat ion

AbaDataFBD=[ucc ’ , Fc ’ ] ; %Power funct ion−based spr ing formulat ion

AbaDataCQL=[udd ’ , Fd ’ ] ; %Combined quadrat i c l i n e a r fo rmulat ion
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C Appendix C - Damage detection

techniques performed on full

scale measurements

C.1 Cross correlation

Figure C.1: Shows cross correlation for the second hit
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Figure C.2: Shows cross correlation for the third hit
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D Appendix D - Simulation results

D.1 Spring formulations

Figure D.1: Stiffness profiles of the non-linear springs.
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Linear spring formulation, k=10 MN/m

Figure D.2: Moving standard deviation for the linear spring formulation
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Figure D.3: Cross correlation for the linear spring formulation
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Figure D.4: Normalization for the linear spring formulation
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Multi-linear spring formulation (ML)

Figure D.5: Moving standard deviation for the multi-linear spring formulation
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Figure D.6: Cross correlation for the multi-linear spring formulation
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Figure D.7: Normalization for the multi-linear spring formulation
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Power function based formulation (PFB)

Figure D.8: Moving standard deviation for the power function-based spring formulation
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Figure D.9: Cross correlation for the power function-based spring formulation
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Figure D.10: Normalization for the power function-based spring formulation
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Combined quadratic linear formulation (CQL)

Figure D.11: Moving standard deviation for the combined quatric-linear spring formulation
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Figure D.12: Cross correlation for the combined quatric-linear spring formulation
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Figure D.13: Normalization for the combined quatric-linear spring formulation
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